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Personnalisation basée sur l'imagerie de modèles cardiaques électro-

physiologiques pour la plani�cation du traitement de la tachycardie ven-

triculaire

La survie lors de la phase aiguë de l'infarctus du myocarde a énormément pro-

gressé au cours des dernières décennies, augmentant ainsi la mortalité des a�ections

liées à l'infarctus chronique. Parmi ces pathologies, la tachycardie ventriculaire (TV)

est une arythmie particulièrement grave qui peut conduire à la �brillation ventricu-

laire, souvent fatale. La TV peut être traitée par ablation par radio-fréquences du

substrat arythmogène. La première phase de cette procédure, longue et risquée, est

une exploration électrophysiologique (EP) du c÷ur consistant à déterminer les cibles

de cette ablation, notamment en provoquant l'arythmie dans un environnement con-

trôlé.

Dans cette thèse, nous proposons de re-créer in silico cette phase exploratoire,

en personnalisation des modèles cardiaques EP. Nous montrons que des informa-

tions clefs à propos de la localisation et de l'hétérogénéité de la cicatrice d'infarctus

peuvent être obtenues automatiquement par une segmentation d'images tomoden-

sitométriques (TDM) utilisant un réseau de neurones arti�ciels. Notre but est alors

d'utiliser ces informations pour réaliser des simulations spéci�ques à un patient de

la propagation de l'onde de dépolarisation dans le myocarde, reproduisant la phase

exploratoire décrite plus haut.

Nous commençons par étudier la relation entre la vitesse de l'onde de dépolarisa-

tion et l'épaisseur du ventricule gauche, relation qui permet de personnaliser un mod-

èle EP Eikonal; cette approche permet fr reproduire des cartes d'activations péri-

odiques du ventricule gauche obtenues durant des TV. Nous proposons ensuite des

algorithmes e�caces pour détecter l'onde de repolarisation sur les électrogrammes

unipolaires (EGU), que nous utilisons pour analyser les EGU contenus dans les en-

registrements intra-cardiaques à notre disposition. Grâce à un recalage multimodal

entre ces enregistrements et des images TDM, nous établissons des relations entre

durées de potentiels d'action (DPA)/propriétés de restitutions de DPA et épaisseur

du ventricule gauche. En�n, ces relations sont utilisés pour paramétrer un modèle

de réaction-di�usion capable de reproduire �dèlement les protocoles d'induction des

cardiologues interventionnels qui provoquent des TV réalistes et documentées.

Mot clés: tachycardie ventriculaire, personnalisation de modèles, électrophysi-

ologie cardiaque, imagerie tomodensitométrique

Image-based Personalised Models of Cardiac Electrophysiology for

Ventricular Tachycardia Therapy Planning

Acute infarct survival rates have drastically improved over the last decades,

mechanically increasing chronic infarct related a�ections. Among these a�ections,

ischaemic ventricular tachycardia (VT) is a particularly serious arrhythmia that can

lead to the often lethal ventricular �brillation. VT can be treated by radio frequency

ablation of the arrhythmogenic substrate. The �rst phase of this long and risky

interventional cardiology procedure is an electrophysiological (EP) exploration of

the heart. This phase aims at localising the ablation targets, notably by inducing

the arrhythmia in a controlled setting.
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In this work we propose to re-create this exploration phase in silico, by per-

sonalising cardiac EP models. We show that key information about infarct scar

location and heterogeneity can be automatically obtained by a deep learning-based

automated segmentation of the myocardium on computed tomography (CT) images.

Our goal is to use this information to run patient-speci�c simulations of depolarisa-

tion wave propagation in the myocardium, mimicking the interventional cardiology

exploration phase.

We start by studying the relationship between the depolarisation wave prop-

agation velocity and the left ventricular wall thickness to personalise an Eikonal

model, an approach that can successfully reproduce periodic activation maps of the

left ventricle recorded during VT. We then propose e�cient algorithms to detect

the repolarisation wave on unipolar electrograms (UEG), that we use to analyse the

UEGs embedded in such intra-cardiac recordings. Thanks to a multimodal registra-

tion between these recordings and CT images, we establish relationships between

action potential durations/restitution properties and left ventricular wall thickness.

These relationships are �nally used to parametrise a reaction-di�usion model able

to reproduce interventional cardiologists' induction protocols that trigger realistic

and documented VTs.

Keywords: ventricular tachycardia, model personalisation, cardiac electrophys-

iology, computed tomography
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The muscular organ that beats in our chests has been recognised as vital by

our ancestors long before the invention of writing. Home of the soul in the ancient

Egyptian religion, object of interest for Greek philosophers, it took several centuries

before its role (pumping blood, oxygen and nutrients throughout our bodies) stopped

being debated. In the 21st century, it is the (almost) universal symbol of love;

probably because of the very perceptible modi�cations of its pace when emotions

overwhelm us, a consequence of its control by our autonomous nervous system.

This control is mediated by electrochemical reactions involving both the nervous

and the cardiovascular system. Muscle cells, similarly to neurons, exhibit brief and

localised but propagating perturbations of their transmembrane voltage, the action

potentials. In the heart, the complex dynamics of this propagation are fundamental

to its optimal1 contraction.

In this manuscript we will not directly focus on the pumping role of the heart,

but rather on its electrical activity, i.e., on the signals that trigger its contraction.

1Whether evolutionary selected processes should be considered optimal or not is a fascinating
question but unfortunately out of the scope of this thesis.
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Figure 1.1: The conduction system of the human heart. The sinoatrial (or

sinus) node, natural pacemaker of the heart, initiates a wave of action potentials that

propagate sequentially and preferentially through specialised conductive structures

(yellow) to reach every part of the heart muscle. (illustration by Madhero88, from

Wikimedia commons, CC-By license)

1.1 Biomedical aspects

1.1.1 Cardiac Physiology

1.1.1.1 Pump function

Human hearts, like those of mammals and birds, are divided into four chambers.

Two atria receive blood through the venous system and pump it into the ventricles

through the mitral and tricuspid valves. Ventricles, in turn, eject it through the

aortic and pulmonary valves to the rest of the body via the arterial network. Atria

and ventricles are grouped two by two to form the right and left hearts. The former

is responsible for pumping �used� blood to the lungs, where it releases carbon dioxide

and �xes dioxygen. The latter pumps oxygen-rich blood to the organs that will use

this gas as a source of energy.

The heart contraction ensures an e�cient expulsion of the blood as it shortens

along axes determined by the �bre orientation (�g. 1.2) of the heart muscle.

1.1.1.2 Sinus rhythm

Unlike skeletal muscles, the heart contraction is not triggered by the release of

neuro-transmitters in the neuromuscular junction. Under normal conditions, the

harmonious, orderly, e�cient contraction of the heart is initiated by a group of

cells located in the right atrium: the sinus node (SN), sometimes referred to as our

natural pacemaker. The role of the nervous system is here indirect: it modulates

the activity of autonomous rhythmic heart cells that the sinus node is a part of.

The contraction signal is mediated by a change of transmembrane potential

(action potential) in the cardiac cells (the cardiomyocytes). This voltage change

propagates throughout the whole heart tissue (the myocardium) via various struc-

https://commons.wikimedia.org/wiki/File:Conductionsystemoftheheart.png
https://commons.wikimedia.org/wiki
https://creativecommons.org/licenses/by/3.0/deed.en/
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Figure 1.2: Heart muscle organisation. Cells are tightly connected via spe-

cialised structures (among which gap junctions and desmosomes are represented

here on the left) to create a supra cellular structure (syncytium); at the macro-

scopic level they form the cardiac �bres. (illustration from Open Stax Anatomy &

Physiology, CC-By license)

tures among which the gap junctions, that connect adjacent cells' cytoplasms to

form a syncytium, play a major role.

This propagation is faster in specialised groups of cells that constitute the con-

duction system of the heart illustrated in �g. 1.1. It follows preferred directions,

guided by the arrangement of myocardial �bres, that re�ects the underlying organ-

isation of cells at the histological level. In a physiological setting, this excitation

wave, initiated in the SN only, reaches each part of the myocardium only once.

Except in speci�c a�ections, the electrical communication between the atria

and the ventricles is unidirectional and possible through a unique checkpoint: the

atrio-ventricular node. This is why from now on in this manuscript, which focuses

on abnormal electrical behaviours of the left ventricle, we will allow ourselves to

barely mention the atria anymore, for which modelling has its own speci�cities and

challenges [Dössel et al. 2012]. This reductionism obviously comes with limitations,

but �what is simple is always wrong; what is not is unusable�.2

1.1.1.3 Cardiac action potential

Because of di�erences in the concentrations of ions between the cytoplasm and the

extra-cellular compartment, there is a measurable di�erence of electrical potential

between the inside and the outside of the double lipidic cellular membrane: the cell

resting potential, negative in the human ventricle cardiomyocytes. The AP men-

tioned in the previous section is a voltage-induced, localised, quick and propagating

2This variation on �all models are wrong� is from Paul Valéry in Mauvaises pensées et autres,
Éditions Gallimard (1942)

https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface
https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface
https://creativecommons.org/licenses/by/3.0/deed.en/
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Figure 1.3: The �ve phases of the ventricular action potential. The main ions

involved in each phase are represented next to the curve. Arrows indicate whether

the ions enter (up) or leave (down) the cytoplasm.

change of ions concentrations inside and outside the cardiac cell. Altough moderate,

this change in concentration transiently reverses the polarity of the transmembrane

potential (�g. 1.3). This change is due to the activation of specialised proteins:

the ion channels and transporters. These ionophore proteins are located on the

cytoplasmic and sarcoplasmic cell membranes, allowing ions to travel across these

membranes either passively under the in�uence of electro-statical and osmotic forces

(ion channels) or actively via energy consumption (ion transporters).

In the human ventricular myocyte, this AP is classically divided in 5 di�erent

phases, illustrated schematically in �g. 1.3. Phase 0 is a rapid depolarisation of the

membrane mainly involving the opening of sodium and calcium channels.3 These

positive ionic species, which concentration is low in the cytoplasm during the resting

potential, quickly raise the transmembrane potential to a positive voltage. Phase

1 is a transient notch before the closing of sodium channels and the characteristic

plateau of phase 2, where an inward �ux of calcium ions is electrically balanced by an

outward �ux of potassium ions. The calcium ions, by binding to speci�c receptors on

the protein machinery responsible for the contraction of cardiomyocytes, actually

constitute the true messengers of the contraction signal at the sub-cellular level.

Finally, phase 3 is the repolarisation phase where after the closing of the calcium

channels, potassium channels repolarize the cell to its resting potential (phase 4).

It is important to mention here that the sodium channels involved in phase 0

are voltage-dependent: they only open if the membrane potential is raised above

a certain threshold value. This initial raise in voltage is mediated by nearby ionic

movements in the same cell or between cells through speci�c structures (gap junc-

tions). Thus, the in�uence of a cell's neighbourhood is what causes the propagation

of the AP through the heart tissue.

From phase 1 to phase 3, no change in membrane potential can trigger another

depolarisation, creating an absolute refractory period of the cardiomyocyte. The

e�ective refractory period in fact extends to a certain duration during phase 4, where

despite a membrane potential equal to the resting potential, no new excitation is

3For didactic purposes, we will now use the term ion channels to designate ion channels and
transporters indistinctly.



1.1. Biomedical aspects 5

Figure 1.4: Infarct. [A] overview of the coronary system; [B] cross-section of the

coronary artery with details on the occlusion process. In this thesis, we prefer

the term �infarct scar� over �dead heart muscle�, and di�erenciate various levels

of scar/healthy cell combinations throughout the organ. (illustration from https:

//www.nhlbi.nih.gov/health-topics/heart-attack, public domain)

possible. This can be seen as a �natural safety mechanism� to prevent constant

re-excitation by a single depolarisation wave.

1.1.2 Infarct and arrhythmia

The pumping function of the heart is also responsible for transporting oxygen and

nutrients to the heart itself via the arterial coronary system. When this process

is disturbed by occlusions of vessels in this system (�g. 1.4), the cardiomyocytes

activity is ine�cient: this painful process is the acute phase of infarction. If the

occlusion lasts, the myocardium su�ers irreversible changes (chronic infarction):

muscular cells are replaced by �brotic tissue which contractility and electrochemical

properties di�er from healthy myocytes.

The past decades have seen dramatic improvements in survival rates of acute in-

farcts, but the permanent damages of the cardiac muscle are responsible for a large

part of infarct-related mortality and morbidity in rich countries. These chronic af-

fections include heart failure when they are related to the pumping function of the

heart and arrhythmia when we talk about the pathological e�ects on the depolari-

sation wave conduction.

One particular infarct related arrhythmia is the re-entrant ventricular tachycar-

dia (VT). In chronic infarct related VT, instead of �crashing� in the late repolari-

sation sites of the myocardium, a depolarisation wave re-excites (re-enters) parts of

https://www.nhlbi.nih.gov/health-topics/heart-attack
https://www.nhlbi.nih.gov/health-topics/heart-attack
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the myocardium that are out of their refractory period. The ventricle thus enters

a self-sustained, disorganised, rapid and ine�cient contraction of the heart, short-

circuiting the physiological role of the SN. In the worst cases this leads to an even

more disorganised and lethal arrhythmia: ventricular �brillation.

1.1.3 VT therapy

Di�erent therapeutic approaches are possible for ischaemic related VT. On one

hand, a possible symptomatic treatment of VT relies on the implantation of an

implantable cardioverter de�brillator (ICD) that detects arrhythmia and delivers

electric shocks (cardioversion) to the patient when needed. On the other hand, the

etiologic treatment for VT is the ablation, usually with radio frequencies (RFA), of

the arrhythmogenic substrate, i.e., the electrical inactivation of the zones responsible

for the re-entry. The details of the risks and challenges of this approach are detailed

in the introductions of the articles reproduced in chapter 2.

During these procedures, the interventional cardiologist �rst records the elec-

trical activity of the cardiomyocytes. For the work presented in this manuscript,

we had access to such recordings for 10 di�erent patients, that helped us build the

major part of our scienti�c contributions.

It is worth mentioning here that cardiac radiology, and particularly computed

tomography and magnetic resonance imaging, by providing insights on the topology

of the ischaemic scar prior to entering the catheter lab, are very valuable for such

interventions [Berruezo et al. 2015].

1.2 Cardiac electrophysiological models

1.2.1 At the cell level

The inspiration for mathematical models of action potential is the Hodgkin�Huxley

model [Hodgkin and Huxley 1952] for which the authors were awarded the Nobel

prize in 1962. This model aimed at reproducing the electrical behaviour of neurons of

giant squids, by extensively describing the movements of ions across their membranes

(neurons, like cardiomyocytes, exhibits action potentials when activated). A lot of

models in the same spirit have speci�cally been developed for the description of

action potentials of cardiomyocytes, and are regularly updated with new insights

from molecular biology.

These cell-level models of cardiac electrophysiology (EP) can be divided in two

subgroups:4

� �Extensive� models: they incorporate detailed information on the behaviour

of numerous ionic channels [Luo C H and Rudy Y 1991], even if they remain

4Only a few models are given as examples here; an exhaustive review including a proper classi-
�cation of the the di�erent cardiac AP models available in the scienti�c literature could probably
constitute a thesis on its own.



1.2. Cardiac electrophysiological models 7

computationally tractable for whole organ simulations [Ten Tusscher et al.

2004]. They can be speci�c to certain animal species [Mahajan et al. 2008] or

to a cardiac cavity [Courtemanche, Ramirez, and Nattel 1998].

� �Simpli�ed� models [Aliev and Pan�lov 1996; Mitchell and Schae�er 2003;

Gray and Franz 2020], which aim at reproducing the general changes of volt-

age over time and speci�c properties surrounding this change in cardiac cells.

These models, which generally group several ionic movements together, follow

the philosophy of the FitzHugh-Nagumo model [FitzHugh 1955], that was a

phenomenological simpli�cation of the Hodgkin�Huxley model [Hodgkin and

Huxley 1952]. In this manuscript, we will only use this second type of AP

models (chapter 4).

1.2.2 Reaction-di�usion

In order to move from single cell to organ-level simulations of cardiac electrical

activity, these models must be associated to a mathematical description of how the

changes in voltage propagate from one �virtual cell�5 to the other.

The most accurate formulation of this behaviour is the bi-domain model. In

this model, we consider the extra-cellular and intra-cellular spaces as di�erent com-

partments separated by the cell membrane. Since the partial di�erential equations

governing the bi-domain model are complex and the numerical schemes required to

run simulations with them are computationally expensive, it is common to use a

simpli�cation called the mono-domain model. In the mono-domain model, we con-

sider that the intra and extra cellular domains have equal anisotropy ratio. It can

be formulated as:

{
χ
(
Cm

∂v
∂t + Iion(v, η)

)
= ∇ · (σ∇v)

∂η
∂t = f(v, η)

(1.1)

Here, χ is the surface-volume ratio; Cm the membrane capacitance; σ the con-

ductivity; ∂v∂t the rate of change of v (the transmembrane potential) with time; Iion
represents the total ion current, a function of v and a vector of state variables η.

η represents one of the cell-level models evoked in the previous section and is a

function of v and other variables speci�c to the chosen ionic model.

This type of model has been successfully used to model re-entrant VT [Lopez-

Perez, Sebastian, Izquierdo, et al. 2019; Relan, Chinchapatnam, et al. 2011]. But

even in this simpli�ed formulation, its parameterisation is challenging, because most

of the parameters are inaccessible to in vivo exploration in human subjects. We will

try to address this problematic in chapter 3 of this thesis.

5�virtual cells� actually represent groups of cells rather than individual myocytes
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1.2.3 Eikonal models

Going further down the simpli�cation path, Eikonal models of cardiac electrophys-

iology form a distinct category, that we investigate in chapter 2. These categories

of models ignore, at least partly, the complexity of the dynamics of voltage changes

in the cardiac membrane. They make the assumption that the propagation of the

APs in the myocardium can be described as a wave. This makes them a lot easier

to parameterise, and extremely fast to compute, at the cost of losing the possibil-

ity to simulate complex phenomena although many variants have been proposed to

overcome this limitation [Pernod et al. 2011].

1.2.4 Goals of cardiac modelling

There are di�erent reasons why one would want to model cardiac electrical activity.

Models and simulations can help understanding the conditions of a known, ex-

perimentally observed phenomenon [Seemann et al. 2006]. This approach mostly lies

in the category of basic science; for instance, one could wonder which ion channels

are responsible for speci�c changes in phases of the AP, or what conduction speeds

are necessary to observe a certain phenomenon at a larger scale.

On the other hand, models can also be used for their predictive power; an ap-

proach that is already actively used for drug design [Tomek et al. 2020]. The work

presented in this manuscript also takes advantage of model predictions, and belongs

to the �eld of patient-speci�c model personalisation.

1.2.5 Patient-speci�c models

Adapting model parameters to a speci�c patient is part of the general �eld of per-

sonalised medicine [Corral-Acero et al. 2020] and can be useful for both prognosis

re�ning and therapy planning [Trayanova, Doshi, and Prakosa 2020].

For pump-function related a�ections, mechanical models generally have to take

into account the circulatory system; yet successes in the personalisation process are

found in the scienti�c literature [Molléro et al. 2018]. Concerning EP model person-

alisation, it can be relevant to consider the isolated heart, because of its (relative)

electrical isolation when we consider depolarisation wave propagation dynamics; this

is our approach in this thesis.

The electrocardiogram imaging (ECGi) inverse problem can be seen as a model

personalisation problem. Its goal is to recover, non-invasively, the activation se-

quence of the myocardium (similar to the activation maps obtained by interventional

cardiologists during RFA procedures) from body surface electrode potentials. Due to

the ill-posedness nature of the ECGi problem, priors in the form of EP models have

been shown to vastly improve the results, notably when theses models incorporate

patient-speci�c imaging data as part of the personalisation process [Gi�ard-Roisin,

Jackson, et al. 2016].

Our work is related to this approach: we set out to establish a patient-speci�c

EP model personalisation framework, based on patient data acquired non-invasively,
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usable in the context of ischaemic VT. Unlike previous related studies [Relan, Chin-

chapatnam, et al. 2011; Relan, Pop, et al. 2011], invasively acquired patient data

will not be used directly in the personalisation process, but will allow us to inves-

tigate how cardiac computed tomography (CT) features can be translated into EP

properties.

1.3 Main contributions

Our main contributions, presented throughout this manuscript are the following:

� an image-based Eikonal model personalisation framework using myocardial

wall thickness to adjust conduction velocity and able to reproduce periodic

activation maps (section 2.1),

� a deep learning approach to segment the myocardial wall on high resolution

three-dimensional CT images with an accuracy within inter-expert variability

(section 2.3.2.1),

� signal processing algorithms tailored for the detection of the challenging repo-

larisation wave on intra-cardiac unipolar electrograms (section 3.2),

� a relationship between the thickness of the myocardium and its repolarisation

properties (section 3.4.2),

� an image-based mono-domain personalisation framework using myocardial

wall thickness for personalisation of conduction velocity and restitution (sec-

tion 4.3).

1.4 Manuscript organisation

In chapter 2, we present di�erent contributions for Eikonal model personalisation,

that also cover image processing algorithms related to the personalisation process

and an imaging/electroanatomical maps registration process used to compare simu-

lations and clinical EP data. We then reproduced integral versions of our previously

published peer-reviewed publications.

In chapter 3, we extract repolarisation features from intra-cardiac unipolar elec-

trograms and link these features to the myocardial wall thickness. As is the case

throughout this thesis, scar assessment is based on the left ventricle wall thickness

on CT images, therefore in the case of chronic myocardial infarction.

Finally, in chapter 4, making good use of the results obtained in chapter 3,

we focus on a mono-domain model of cardiac EP. We show that the repolarisation

features obtained in the previous chapter are able to reproduce arrhythmia induction

protocols used by interventional cardiologists in the context of post-infarct VT.
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Eikonal models usually output activation maps, i.e., local activation times (LAT)

associated to coordinates in space; in most Eikonal variants, this map represents only

one cycle of activation of the myocardium. Interventional cardiologists are familiar

with this type of maps, because based on the hypothesis of activation periodicity,

most EP lab terminals reconstruct the activation map of a whole cardiac cavity

by aggregating and synchronising data acquired during di�erent cycles. This is

necessary because many exploration catheters can only acquire data on a small part

of the myocardium at each cycle. During this recording, the clinician needs to move

the catheter inside the cavity during numerous consecutive cycles to recreate an

activation map of the whole cavity during one cycle. This explains the surprising

geometries and in part at least, the presence of seemingly aberrant LATs found in

clinical activation maps.

In its simplest form (eq. 2.1), the Eikonal model only requires a heart geometry,

a propagation velocity for each simulation element, and starting point(s) for the

depolarisation wave initiation. The simulations are very fast to compute thanks to

the fast marching method [Sermesant, Coudière, et al. 2005], making them suited

for the development of interactive tools [Pernod et al. 2011] and compatible with

clinical time frames [Neic et al. 2017].

Eikonal models of cardiac EP have many limitations for which di�erent solutions

have been proposed, for instance to address the anisotropic nature of the AP prop-

agation in the myocardium due to myocardial �bre orientation and/or the front

curvature e�ect [Keener 1991; Jacquemet 2012]. Using a multi-front formulation

[Pernod et al. 2011; Konukoglu et al. 2011], it is also possible to model more than a

single activation cycle.

In this thesis, we mostly used the simplest formulation of the Eikonal model with

the exception of our participation in a modelling challenge presented in section 2.4.

In this chapter, we reproduced integral versions of our publications in peer-

reviewed conferences (section 2.1, 2.3 and 2.4) and journal (section 2.2). They all

concern the Eikonal model of cardiac EP.

Our �rst publication (VT Scan: Towards an E�cient Pipeline from

Computed Tomography Images to Ventricular Tachycardia Ablation, sec-

tion 2.1) must be seen as a �rst attempt to use CT imaging as a support for model

personalisation in the context of ischaemic re-entrant VT. While we do not introduce

any major modi�cation to the formulation of the Eikonal model, we propose direct

ways to personalise it based on wall thickness and to reproduce real intra-cardiac

recordings of re-entrant VT by imposing a refractory plane to obtain a unidirectional

block. By giving a null conduction speed on a plane behind the starting point of

the depolarisation and orthogonal to the initial propagation direction, we model the

unidirectional propagation pattern typically found in post-infarct VT.

Using this formulation, we present visual results in section 2.1.5 that aims to

convince the reader about the pertinence of cardiac CT imaging as a support for
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patient-speci�c simulations.

Our contributions in this article are:

� a relationship between CT LV wall thickness and depolarisation wave front

apparent propagation speed (section 2.1.3.2),

� a way to model refractoriness in Eikonal models for unidirectional blocks (sec-

tion 2.1.3).

In section 2.2, our journal article (Fast Personalised Electrophysiological

Models from CT Images for Ventricular Tachycardia Ablation Planning)

incorporates the results of the previous conference article, and extends it in various

ways.

First, the article re�ects the fact that between the two articles we could retrieve

more EP data coupled with CT imaging. This allowed to test our personalisation

process for activation maps of controlled pacing and not just VT.

Secondly, in an attempt to automate the VT isthmuses detection on CT images,

we introduce a channelness �lter, purely based on imaging features.

Thirdly, it brie�y describes a multi-modal registration framework based on spher-

ical coordinates that eased the comparisons between CT-based simulations and EP

data in our work. These spherical coordinates are in the spirit of the universal

ventricular coordinates [J. Bayer et al. 2018] proposed by others during the same

year. This framework was also used in comparative studies between di�erent imag-

ing modalities [Nuñez-Garcia, Cedilnik, Jia, Cochet, et al. 2020; Magat et al. 2020]

in collaboration with scientists and clinicians from the Bordeaux University.

Our contributions in this article are:

� a registration framework for multi-modal data integration (section 2.2.2.7),

� an image processing algorithm to identify potential VT isthmuses on CT im-

ages (section 2.2.2.6),

� a validation of the thickness/speed relationship on controlled pacing electro-

anatomical maps (section 2.2.3.3).

Since our goal is to establish a clinically usable model personalisation framework

in the short term, and since this framework relies on CT imaging segmentation, it

made sense for us to explore automated segmentation strategies in the conference

article presented in section 2.3 (Fully Automated Electrophysiological Model

Personalisation Framework from CT Imaging). In this section we devel-

oped deep learning methods for left ventricular wall segmentation in CT images,

with some speci�c adaptations. Besides the usual segmentations scores (Dice score,

Hausdor� distance) used to evaluate this task, knowing that our personalisation

methodology relies on LV wall thickness assessment, we evaluated the impact of such

image processing approach on this feature. The segmentation network presented in

this section was also used in imaging related publications resulting from our collab-

oration with researchers and clinicians from the Bordeaux Hospital [Nuñez-Garcia,
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Cedilnik, Jia, Sermesant, et al. 2020; Nuñez-Garcia, Cedilnik, Jia, Cochet, et al.

2020]. Unlike the previously proposed model-based approach for this task [Ecabert

et al. 2008], our segmentation methodology is purely data-driven.

This article also introduces a way to simulate unipolar electrograms and body

surface potentials from activation maps, such as those produced by but not limited

to the Eikonal model. Several extensions of the Eikonal model were proposed to

simulate ECGs, for instance Pezzuto et al. [2017], here we directly estimate a local

dipole and compute the local electrical �eld using the dipole formulation detailed by

Gi�ard-Roisin, Jackson, et al. [2016]. This electrogram rapid simulations framework

was also used in a novel formulation of the ECGi inverse problem [Bacoyannis et al.

2019].

Our contributions in this article are:

� a deep learning approach to segment the myocardial wall on high resolution

three-dimensional CT images (section 2.3.2.1),

� an electrogram simulation model formulation by combining the Eikonal model

with an ionic model and the dipole formulation (section 2.3.3.4).

In section 2.4 (Eikonal Model Personalisation Using Invasive Data

to Predict Cardiac Resynchronisation Therapy Electrophysiological Re-

sponse), we applied our cardiac EP model personalisation approach to cardiac

resynchronisation therapy (CRT) response.

Contrarily to the rest of our work, model personalisation here is based on invasive

data. However, this invasive data, intracardiac recordings of electric activity, is of

the same nature as the data we used elsewhere as our support for model calibration

and validation. Exploitation of such data is not trivial, notably for reasons evoked

in this chapter introduction, and working with this EP data helped us apprehend

our main research focus with a sharpened eye. More precisely, we here addressed

the question of precisely detecting the depolarisation onsets and deriving wave front

propagation speed from such data.

We also illustrate in this section some of the possible variations of Eikonal models

that we mentioned earlier.

Our contributions in this article are:

� a methodology to identify initial depolarisation sites on incomplete intra-

cardiac EP data (section 2.4.4),

� an Eikonal model-based approach to identify apparent propagation speed on

intra-cardiac electro-anatomical maps (section 2.4.2.2).
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VT Scan: Towards an E�cient Pipelinefrom
Computed Tomography Images to Ventricular

Tachycardia Ablation

Cedilnik, N., Duchateau, J., Dubois, R., Jaïs, P., Cochet, H., and Sermesant, M.

Published in Functional Imaging and Modelling of the Heart [2017]

2.1 VT scan

2.1.1 Introduction

Overview

CT 
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Figure 2.1: Overall pipeline of the approach. Ridge and circuit detection are not

presented in this article

Sudden cardiac death (SCD) due to ventricular arrhythmia is responsible for hun-

dreds of thousands of deaths each year [Moza�arian et al. 2016]. A high proportion

of these arrhythmias are related to ischemic cardiomyopathy, which promotes both

ventricular �brillation and ventricular tachycardia (VT). The cornerstone of SCD

prevention in an individual at risk is the use of an implantable cardioverter de�bril-

lator (ICD). ICDs reduce mortality, but recurrent VT in recipients are a source of

important morbidity. VT causes syncope, heart failure, painful shocks and repeti-

tive ICD interventions reducing device lifespan. In a small number of cases called

arrhythmic storms, the arrhythmia burden is such that the ICD can be insu�cient

to avoid arrhythmic death.

In this context, radio-frequency ablation aiming at eliminating re-entry circuits

responsible for VT has emerged as an interesting option. VT ablation has already

demonstrated its bene�ts [Ghanbari et al. 2014] but still lacks clinical consensus

on optimal ablation strategy [Aliot et al. 2009]. Two classical strategies have been

developped by electrophysiologists. The �rst strategy focuses on mapping the ar-

rhythmia circuit by inducing VT before ablating the critical isthmus. The second

strategy focuses on the substrate, eliminating all abnormal potentials that may con-

tain such isthmuses.

Both strategies are very time-consuming, with long mapping and ablation phases

respectively, and procedures are therefore often incomplete in patients with poor

general condition. Many authors have thus shown an interest in developing methods

coupling non-invasive exploration and modelling to predict both VT risk and optimal

ablation targets [Ashikaga et al. 2013; H. Arevalo et al. 2013; Rocio Cabrera-Lozoya

et al. 2014; Chen et al. 2016; Wang et al. 2016]. Most of the published work

in this area relies on cardiac magnetic resonance imaging (CMR), at the moment
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considered as the gold standard to assess myocardial scar, in particular using late

gadolinium enhancement sequences. However, despite being the reference method

to detect �brosis in�ltration in healthy tissue, CMR methods clinically available

still lack spatial resolution under 2 mm to accurately assess scar heterogeneity in

chronic healed myocardial infarction, because the latter is associated with severe

wall thinning (down to 1 mm). Moreover, most patients recruited for VT ablation

cannot undergo CMR due to an already implanted ICD.

In contrast, recent advances in cardiac computed tomography (CT) technology

now enable the assessment of cardiac anatomy with extremely high spatial reso-

lution. We hypothesized that such resolution could be of value in assessing the

heterogeneity of myocardial thickness in chronic healed infarcts. Based on our clin-

ical practice, we indeed believe that detecting VT isthmuses relies on detecting thin

residual layers of muscle cells-rich tissue inside infarct scars that CMR fails to iden-

tify due to partial volume e�ect. CT image acquisistion is less operator-dependent

than CMR, making it a �rst class imaging modality for automated and reproductible

processing pipelines. CT presents fewer contraindication than CMR (it is notably

feasible in patients with ICD), it costs less, and its availability is superior.

The aim of this study was to assess the relationship between wall thickness

heterogeneity, as assessed by CT, and ventricular tachycardia mechanisms in chronic

myocardial infarction, using a computational approach (see the overall pipeline in

�g. 2.1). This manuscript presents the �rst steps of this pipeline, in order to evaluate

the relationship between simulations based on wall thickness and electro-anatomical

mapping data.

2.1.2 Image Acquisition and Processing

2.1.2.1 Population

The data we used come from 7 patients (age 58 ± 7 years, 1 woman) referred for

catheter ablation therapy in the context of post-infarction ventricular tachycardia.

The protocol of this study was approved by the local research ethics committee.

2.1.2.2 Acquisition

All the patients underwent contrast-enhanced ECG-gated cardiac multi-detector CT

(MDCT) using a 64-slice clinical scanner (SOMATOM De�nition, Siemens Medical

Systems, Forchheim, Germany) between 1 to 3 days prior to the electrophysiological

study. This imaging study was performed as part of standard care as there is an

indication to undergo cardiac MDCT before electrophysiological procedures to rule

out intra cardiac thrombi. Coronary angiographic images were acquired during the

injection of a 120 ml bolus of iomeprol 400 mg/ml (Bracco, Milan, Italy) at a rate

of 4 ml/s. Radiation exposure was typically between 2 and 4 mSv. Images were

acquired in supine position, with tube current modulation set to end-diastole. The

resulting voxels have a dimension of 0.4× 0.4× 1 mm3.
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Figure 2.2: (Left) Original CT-scan image. (Right) Wall mask (green). Note the

thickness heterogeneity (red box).
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Figure 2.3: (Left-Middle) Wall thickness as de�ned in section 2.1.2.4. (Right) Volt-

age map recorded during sinus rhythm.

2.1.2.3 Segmentation

The left ventricular endocardium was automatically segmented using a region-

growing algorithm, the thresholds to discriminate between the blood pool and the

wall being optimized from a prior analysis of blood and wall densities. The epi-

cardium was segmented using a semi-automated tool based on the interpolation of

manually-drawn polygons. All analyses were performed using the MUSIC software

(IHU Liryc Bordeaux, Inria Sophia Antipolis, France). An example of the result of

such segmentation can be seen in �g. 2.2.

2.1.2.4 Wall Thickness Computation

In CT-scan images, only the healthy part of the myocardium is visible, hence wall

thinning is a good marker of scar localization and abnormal electro-physiological

parameters [Komatsu et al. 2013]. To accurately compute wall thickness, and to

overcome di�culties related to its de�nition on tri-dimensional images, we chose the

Yezzi et al. method [Yezzi and Prince 2003]. It is based on solving the Laplace equa-

tion with Dirichlet boundary conditions to determine the trajectories along which
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the thickness will be computed. One advantage of such thickness de�nition is that it

is then de�ned for every voxel, which is later useful in our model (see section 2.1.3.2).

An example of the results can be observed in �g. 2.3 (left and middle), along with a

comparison with the much lower level of detail in scar morphology assessment that

is obtained with a voltage map from a sinus rhythm recording.

2.1.3 Cardiac Electrophysiology Modelling

2.1.3.1 Eikonal Model

We chose the Eikonal model for simulating the wave front propagation because of

the following reasons:

� It requires very few parameters compared with biophysical models, making it

more suitable for patient-speci�c personalization in a clinical setting.

� Its output is an activation map directly comparable with the clinical data.

� It allows for very fast solving thanks to the fast marching algorithm.

We used the standard Eikonal formulation in this study:

v(X)||∇T (X)|| = 1 (2.1)

The sole parameter required besides the myocardial geometry is the wave front

propagation speed v(X) (see section 2.1.3.2). More sophisticated biophysical models

allow for more precise results; however, this precision relies on an accurate estimate

of the parameters and the necessary data to such ends are not available in clinical

practice.

This original approach enabled us to parametrize directly the model on the basis

of the thickness computed from the images. Additionally, we generated a unidirec-

tional onset by creating an arti�cial conduction block. This block was needed to

represent the refractoriness of the previously activated tissue that the Eikonal model

does not include. An illustration of this phenomenon can be observed in the green

box in �g. 2.4.

2.1.3.2 Wave Front Propagation Speed Estimation

As there is a link between myocardial wall thickness and its viability, it was pos-

sible to parameterize our model from the previous wall thickness computation (see

section 2.1.2.4). There are basically three di�erent cases:

1. Healthy myocardium where the wave front propagation speed is normal.

2. Dense �brotic scar where the wave front propagation is extremely slow.

3. Gray zone area where it is somewhere in between.
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Figure 2.4: (Left) Transfer function used to estimate wave front propagation speed

from wall thickness. (Right) Example resulting speed map. Note the arti�cial

refractory block (dark straight line in green box).

Instead of arbitrarily choosing a speci�c speed for the �gray zone�, we exploited

the resolution o�ered by our images to come up with a smooth, continuous estimate

of the speed between healthy and scar myocardium. This resulted in the following

logistic transfer function:

v(X) =
vmax

1 + er(p−t(X))
(2.2)

where vmax is the maximum wave front propagation speed, t(X) the thickness

at voxel X, p the in�ection point of the sigmoidal function, i.e., the thickness at

which we reach 1
2vmax and r a dimensionless parameter de�ning the steepness of the

transfer function.

More speci�cally, we chose the following parameters:

� vmax = 0.6 m/s, as it is the conduction speed of healthy myocardium,

� p = 3 mm, as it was considered the gray zone �center�,

� r = 2, in order to obtain virtually null speed in areas where thickness is below

2 mm.

The resulting transfer function can be visualized in �g. 2.4.

The �bre orientations were not included in our simulations. They might be in

our �nal pipeline, but it is worth noting that we obtained satisfying results without

this parameter.
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Figure 2.5: Comparison of predicted (left) activation maps (in ms) to �ground truth�

data (right) obtained from VT recording during RF catheter ablation in 4 di�erent

patients. White arrows: starting point and direction of simulated electrical impulse.

Both recorded and simulated VT represent one cycle only.

2.1.4 Electrophysiological Data

In order to evaluate the simulation results, we compared them to electro-anatomical

mapping data. As part of the clinical management of their arrhythmia, all the pa-

tients underwent an electrophysiological procedure using a 3-dimensional electro-

anatomical mapping system (Rhythmia, Boston scienti�c, USA) and a basket

catheter (Orion, Boston scienti�c, USA) dedicated to high-density mapping. During

the procedure, ventricular tachycardia was induced using a dedicated programmed

stimulation protocol, and the arrhythmia could be mapped at extremely high den-

sity (about 10 000 points per map). Patients were then treated by catheter ablation

targeting the critical isthmus of the recorded tachycardia, as well as potential other

targets identi�ed either by pace mapping or sinus rhythm substrate mapping. These

maps were manually registered to the CT images.

2.1.5 Results

Video �Animation of �g. 2.5, top left� is available at https://nicoco.fr/phd/fig/

fimh2017/vid1.mp4

Video �Animation of �g. 2.5, top right� is available at https://nicoco.fr/phd/

fig/fimh2017/vid2.mp4

Video �Animation of �g. 2.5, bottom left� is available at https://nicoco.fr/

https://nicoco.fr/phd/fig/fimh2017/vid1.mp4
https://nicoco.fr/phd/fig/fimh2017/vid1.mp4
https://nicoco.fr/phd/fig/fimh2017/vid2.mp4
https://nicoco.fr/phd/fig/fimh2017/vid2.mp4
https://nicoco.fr/phd/fig/fimh2017/vid3.mp4
https://nicoco.fr/phd/fig/fimh2017/vid3.mp4
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phd/fig/fimh2017/vid3.mp4

Video �Animation of �g. 2.5, bottom right� is available at https://nicoco.fr/

phd/fig/fimh2017/vid4.mp4

Examples results of the simulations and their comparisons to mapping data are

presented in �g. 2.5. In each case, a qualitatively similar re-entry circuit is predicted.

Similar visual results were reached for all the VTs, without any further tuning

of the model. However, to reach such results we needed to pick the stimulations

points and directions very carefully.

2.1.6 Implementation

All the activation maps acquired during ventricular tachycardia (10 maps of 10 dif-

ferent circuits acquired in 7 patients) were exported to Matlab software (Mathworks,

USA).

The simulation was computed directly on the voxel data as the resolution of our

images represents highly detailed anatomy, and to avoid arbitrary choices inherent

to mesh construction. We then mapped the results to a mesh but for visualization

purposes only.

We used a custom Python package for the thickness computation and the Sim-

pleITK [Yaniv et al. 2018] fast marching implementation to solve the Eikonal equa-

tion.

The arti�cial conduction block was created by setting the wave front propagation

speed to zero in a parametrically de�ned disk of 15 mm radius, 2 mm behind the

stimulation points, orthogonal to the desired stimulation direction.

From the results of the semi-automatic CT image segmentation, the complete

simulation pipeline, with an informal benchmark realized on a i7-5500U CPU at

2.40GHz (using only 1 core), looks as follows:

Compute thickness from masks [43s]

Apply transfer function [0.5s]

Select pacing site and create refractory block [7s]

Solve the Eikonal equation [0.5s]

2.1.7 Discussion

This article presents a framework that may be suitable for VT RF ablation targets

and prediction of VT risk in daily clinical practice. The results presented here are

preliminary but promising, due to the robustness of the image processing, the fast

simulation of the model, and the high-resolution of CT scan images. This resolution

was crucial in the characterization of the VT isthmuses presented in this study.

The main limitations of the results presented here are the limited sample size

and the lack of quantitative evaluation of the simulation results. It is however worth

noting that we were able to obtain such results without advanced calibration of the

model's parameters. For the latter, we plan to map the electrophysiological data

onto the image-based meshes for more quantitative comparison. However it remains

https://nicoco.fr/phd/fig/fimh2017/vid3.mp4
https://nicoco.fr/phd/fig/fimh2017/vid3.mp4
https://nicoco.fr/phd/fig/fimh2017/vid4.mp4
https://nicoco.fr/phd/fig/fimh2017/vid4.mp4
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challenging due to the shape di�erences. Heterogeneity in CT images also induce a

bias in thickness computation that may require patient-speci�c personnalization of

the transfer function parameters.

We believe that in order to fully automatize the pipeline, we need not only to

determine a ridge detection strategy, but also to overcome some of the simpli�cations

induced by the Eikonal modelling choice and enhance the circuit characterization.
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Fast Personalised Electrophysiological Models
from CT Images for Ventricular Tachycardia

Ablation Planning

Cedilnik, N., Duchateau, J., Dubois, R., Sacher, F., Jaïs, P., Cochet, H., and

Sermesant, M.

Published in EP-Europace [2018]

2.2 Going further with VT scan

2.2.1 Background

Personalised, i.e., patient-speci�c, simulation of the heart electrical behaviour is a

dynamic research �eld [Gray and Pathmanathan 2018]. Building such simulation

is often a challenge as mathematical models can be computationally costly and

clinical data is sparse and noisy. Most of the work in this area relies on extracting

�brosis from late-enhancement cardiac magnetic resonance imaging (MRI) [Lopez-

Perez, Sebastian, and Ferrero 2015]. In a post-infarct context, this geometry is

then classically divided into 3 di�erent zones based on MRI signal processing: the

healthy myocardium, the dense scar and a grey zone where �brosis and remaining

functional cardiomyocytes coexist. Grouped together, these three zones represent a

three-dimensional domain upon which a set of partial di�erential equations (PDE) is

solved. The model parameters are then chosen di�erently according to the di�erent

zones of the domain to represent the di�erent electrophysiological properties of these

tissues. Models typically used are reaction-di�usion models [Chen et al. 2016], where

the reaction part mimics cell-level changes in membrane potential and the di�usion

part re�ects the ability of cardiac action potential to propagate through specialised

structures. Adequately parameterising such models is a tedious task; solving takes

a lot of computational power and time, making them hard to enter medical practice

in a clinically compatible time frame.

Additionally, before the actual simulation computation, the binary masks (out-

puts from image segmentation) often need to be transformed into another three-

dimensional representation, a 3D mesh, more suited to �nite elements PDE solvers

[Lopez-Perez, Sebastian, and Ferrero 2015]. Choosing adequate parameters for the

mesh generation step is critical in order to reach reasonable numerical accuracy and

computational time. It requires speci�c expertise rarely available on day-to-day

clinical practice.

Some authors have reported realistic intra-cardiac electrograms simulation

[Rocío Cabrera-Lozoya et al. 2016], but the output of such models are usually visual

simulations of the wave front propagation in the cardiac tissue, i.e. activation maps

[Chen et al. 2016]. Either way, the goal of such simulations is always to identify ab-

normal activation patterns linked to fatal arrhythmias. They could improve sudden
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cardiac death (SCD) risk prediction [H. J. Arevalo et al. 2016], a major challenge in

cardiology [Hill et al. 2016].

They can also be used to improve post infarct re-entrant ventricular tachycar-

dia (VT) radio-frequency ablation (RFA) outcome by contributing to the planning

phase of the intervention [Rocío Cabrera-Lozoya et al. 2016]. In these interven-

tions, the VT is usually induced and mapped (when hemodynamically tolerated)

allowing the clinician to identify re-entry isthmus(es) to be ablated. This risky and

long target identi�cation phase still drastically limits the wide spread and success

rate of such interventions. Moreover, most of these patients already carry an im-

plantable cardioverter-de�brillator (ICD), which makes model personalisation from

MRI di�cult if not impossible.

It has been reported that cardiac computed tomography (CT) images could

be useful for VT RFA [Mahida et al. 2017]. CT o�ers better cost, accessibility,

inter-centre and inter-personal reproducibility than MRI. Most notably CTs are not

a problem in ICD carriers in whom the image quality and spatial resolution are

preserved unlike with MRI. This is important as a majority of scar related VT

ablations are conducted in ICD carriers. The better resolution of CT images could

also be critical in appreciating scar heterogeneity and thus identifying potential

targets.

On CT images, the infarct scar is characterised by an apparent thinning of the

myocardial wall [Mahida et al. 2017], which has been shown to correlate with low

voltage areas [Ghannam Michael et al. 2018]. Some VT re-entry isthmuses are

also visible on such images, with a characteristic morphology on myocardial wall

thickness maps. It has indeed been recently shown that they appear as a zone

of moderate thinning bordered by more intense thinning and joining two areas of

normal thickness [Ghannam Michael et al. 2018].

In this paper we propose a novel framework to simulate activation maps from

CT images. It uses CT myocardial wall thickness to parameterise a fast organ-level

wave front propagation model in a pipeline visually represented in �g. 2.6.

2.2.2 Methods

2.2.2.1 Cardiac Computed Tomography Images

Images were acquired using a contrast-enhanced ECG-gated cardiac multi-detector

CT using a 64-slice clinical scanner (SOMATOM De�nition, Siemens Medical Sys-

tems, Forchheim, Germany). Coronary angiography images were acquired during

the injection of a 120 ml bolus of iomeprol 400 mg/ml (Bracco, Milan, Italy) at a

rate of 4 ml/s. Radiation exposure was typically between 2 and 4 mSv. Images were

acquired in supine position, with tube current modulation set to end-diastole. The

resulting voxels have a dimension of 0.4Ö0.4Ö1 mm³, superior to what clinically

available MRIs can produce. A resulting short-axis slice can be visualised on �g. 2.6

(left part).
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Figure 2.6: Our modelling pipeline. After image acquisition, the endocardial mask

is segmented using a region growing algorithm; the epicardial mask using manually

drawn splines on a few slices and interpolation in-between. The infarct scar is iden-

ti�ed as myocardial wall thinning, automatically assessed by an automated method.

Potential channels are identi�ed using a channelness �lter and activation maps can

be simulated after choosing a pacing site.

2.2.2.2 Wall Segmentation

On these images, the left ventricle was segmented as follows.

� The endocardial mask was segmented using a region-growing algorithm, the

thresholds to discriminate between the blood pool and the wall being optimised

from a prior analysis of blood and wall densities.

� The epicardial mask was segmented using a semi-automated tool built within

the MUSIC software (IHU Liryc Bordeaux, Inria Sophia Antipolis, France):

splines were manually drawn on a few slices and interpolated in-between.

The resulting myocardial wall mask (epicardial mask minus the endocardial

mask) has around one million voxels.

2.2.2.3 Wall Thickness Estimation

On such images, chronic infarct scars appear as a thinning of the myocardial wall

[Mahida et al. 2017]. To localise scars, instead of successive dilations of the endocar-

dial masks that were used in other studies [Ghannam Michael et al. 2018], we opted

for a fully automated and continuous method [Yezzi and Prince 2003]. Estimating

the thickness of a structure from 3D medical images is not trivial. The accuracy

can be compromised depending on how the two surfaces are described, and how

the distance between them is computed. In this work, we chose to rely on a robust

method to compute the shortest path between the endocardium and the epicardium,

and then integrate the distance along this path. This is based on solving a partial

di�erential equation to compute a thickness value at every voxel of the wall mask

[Yezzi and Prince 2003]. Example results of such thickness maps are presented on

�g. 2.11.
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Figure 2.7: A typical VT isthmus as seen on CT images: a moderate thinning in

the myocardial wall is surrounded by thinner zones. The isthmus connects to zones

of normal thickness (not seen on this slice).

2.2.2.4 Eikonal Model

Numerous models were proposed in the literature to simulate cardiac action potential

dynamics. In order to obtain a fast and robust pipeline, we used the Eikonal model

of wave front propagation that directly outputs an activation map. It is very robust

to changes in image resolution and it can be computed very e�ciently with the

fast-marching algorithm.

Model inputs are:

� The myocardial wall mask, i.e., the domain of resolution.

� For every voxels of this mask, a local conduction velocity.

� One or more onset point(s), to initiate propagation.

� (Optionally) An arti�cial unidirectional block, in order to orientate the initial

propagation, used to reproduce re-entrant VT patterns.

Let v be the local conduction velocity, T the local activation time and x a voxel

of the wall mask, the formal expression of this model is the following:

v(x) ‖ ∇T (x) ‖= 1

To solve this equation we used the fast marching algorithm implementation in

the Insight Segmentation and Registration Toolkit (ITK, Kitware, USA). It did not

require any meshing step as this implementation directly takes advantage of the

regular grid of CT 3D images.

2.2.2.5 Model parameters

Due to a �zig-zag� course of activation in surviving bundles existing in the infarcted

tissue, the wave front propagates very slowly and �nally exits the scar [De Bakker
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Figure 2.8: From computed tomography myocardial wall thickness to wave front

propagation speed, transforming an image parameter to a model parameter.

et al. 1993]. We hypothesised that the wave front propagation velocity could be

estimated from the wall thickness using a transfer function that would have the

following features:

� It should reach a plateau, vmax, above physiological wall thicknesses.

� It should be virtually null, vmin, below certain thicknesses, where almost no

conducting cells remain.

Let v be the velocity at each voxel x of the domain, W the thickness, p the

mid-point between �pure scar� and �healthy� thicknesses and r a parameter in�u-

encing the slope of the transition between vmin and vmax. We designed the following

continuous transfer function from wall thickness to wave front propagation �g. 2.8:

v(x) =
vmax − vmin

1 + er(p−W (x))
+ vmin

The fast-marching solver needs a �stopping value�, i.e., a maximum wave front

reaching time. In our experiments, we set it to 500 ms and also assigned this value

to non-activated parts of the domain.

In order to model a re-entrant VT pattern, we added an arti�cial �refractory

wall�, as previously described in [Cedilnik, Duchateau, Dubois, Jaïs, et al. 2017].

A conduction block orthogonal to the isthmus longitudinal axis was added a few

voxels behind the simulation onset point. It allows to model tissue refractoriness

while staying in the simple Eikonal model framework, allowing fast computations

and keeping the computational cost very low. This is only needed to reproduce VT

activation maps, not for activation maps from controlled pacing.

2.2.2.6 Automatic ridge detection

In order to detect VT isthmuses based on image criteria alone, we used the object-

ness �lter [Antiga 2007], implementation of the Insight Toolkit (Kitware, USA). It
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is a generalisation of the Hessian matrix-based vessel detection method described

by Frangi [Frangi et al. 1998]. We fed this algorithm with a modi�ed version of the

thickness map where only potential isthmuses candidates [Ghannam Michael et al.

2018], i.e., moderately thin zones between 2 and 5 mm thickness, remained. We

tuned the �lter's parameter to respect the topological properties known to charac-

terise VT isthmuses on CT images [Ghannam Michael et al. 2018]. We named the

output maps obtained this way channelness maps.

2.2.2.7 Comparison with recorded activation maps

In order to gain insight on our model relevance and limitations, we compared our

simulation to activation maps acquired during RFA interventions. These activation

maps were produced by the Rhythmia mapping system (Boston Scienti�c, USA)

using a 64-electrodes Orion Catheter. They were recorded during sinus rhythm,

controlled pacing and VT. They come in the form of surface triangular meshes in

di�erent reference frames than the corresponding CT images.

In order to compare both visually (qualitatively) and numerically (quantita-

tively) the outputs of our simulations to the reference data, we took advantage of

the correlation between low-voltages zones and CT wall thinning areas [Ghannam

Michael et al. 2018] to manually align the two geometries. After �tting an ellipsoid

to the point cloud and using the ellipsoid's centre, we de�ned each point by spherical

coordinates. A visual representation of this registration framework is presented on

�g. 2.9. Finally, it was possible to project the data from the EP studies onto the

more accurate geometry extracted from the CT images.

Using the ellipsoid long axis and a manually chosen point on the septum, this

method also allows the fast and automated generation of bull's eye plots.

2.2.3 Results

2.2.3.1 Execution time

The semi-automated segmentation of the left ventricle takes around 10 minutes

for an experienced user of the MUSIC software. The thickness computation takes

about 1 minute, depending on the number of voxels of the wall mask. The actual

simulation takes less than 1 minute. The channelness computation is the longest

step, around 2 to 4 minutes. This informal benchmark results were measured on an

Intel i7-5500U-powered laptop.

2.2.3.2 Automated ridge detection

On all channelness maps, an expert cardiologist and an expert radiologist visually

assessed that ridges corresponding to their critical isthmus de�nition could be de-

tected using the channelness �lter.
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Figure 2.9: Registration of electro-physiological study data to computed tomography

geometry. Image-based thickness map and EP data are manually aligned based

on the wall thinning/low voltage correlation. EP data is then projected using a

spherical coordinates system.
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Figure 2.10: (Left) thickness map and (Right) channelness �lter results

2.2.3.3 Simulated activation maps

For most cases, the general activation patterns of the simulations obtained using our

framework match the recordings when using velocities and thicknesses thresholds

found in the literature. As can be seen on �g. 2.10, scar late activation is visible

both on simulations and on controlled pacing. The characteristic �gure of eight

activation patterns of re-entrant VT can also be accurately reproduced using our

framework, when using a refractory wall to give the propagation an initial direction.

Video versions are available as supplementary materials to o�er a better appreciation

of the similar dynamics of wave front propagation between the simulations and

the measurements. This is actually the usual way recorded activation maps are

visualised by the interventional cardiologist in order to decide ablation targets.

2.2.4 Discussion

2.2.4.1 Model limitations

We voluntarily opted for the simplest cardiac EP model in order to build a fast

pipeline. For instance, most of the related work includes an algorithmic �bre orien-

tation estimation that we did not include. We do not believe that it would improve

much the results, as �bre orientation and its in�uence are still hard to estimate,

particularly in infarcted zones.

In contrast, we believe that an important phenomenon that our model does not

address is the front curvature impact. A straight wave front is known to propagate

faster than a curved wave front, but this is not the case in our simulations. In

some cases, this results in fast, unrealistic, �U-turns� of the excitation. This could

be improved with extensions of the Eikonal model [Chinchapatnam et al. 2008], or

by switching to a reaction-di�usion model parameterised on wall thickness. The
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Figure 2.11: Comparison of recorded and simulated activation maps. Our model

is able to reproduce both VT re-entrant patterns and characteristic late activation

times of scar zones.
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main challenge will here be to preserve a clinically compatible framework in terms

of parameterisation complexity and required computational time.

2.2.4.2 Velocities

Our model probably simpli�es activation patterns inside the VT isthmuses by glob-

ally slowing down the propagation in them. A recent animal study [Anter et al.

2016] indeed suggests that the depolarisation slows down when entering and exit-

ing the isthmus but propagates normally in between. The wave front would then

be slowed down inside the core of the isthmus. However, we think that our global

slowing down in the whole isthmus is a relevant averaging simpli�cation at the or-

gan scale. In the case where our further work would show the pro-eminence of this

phenomenon, an option would be to use channelness maps to accordingly change

velocities in isthmuses.

2.2.4.3 Thickness thresholds

Based on data from a recent study [Ghannam Michael et al. 2018], we de�ned

global thickness thresholds across all patients to discriminate between healthy and

scar zones. Speci�cally, we set them to below 2 mm for �pure scar� and above 5 mm

for healthy myocardium. However, in some VT cases, the wave front propagation

crossed scar zones too fast and matching the recording proved more challenging.

We noticed that in those cases, for instance the one shown in �g. 2.12, the sim-

ulation output could be drastically improved by shifting these thresholds to higher

values, i.e., by raising the p parameter of our thickness to velocity transfer function.

Using patient-speci�c thresholds both for thickness maps analysis and model param-

eterisation could improve the use of CT images in the context of VT RFA. These

patient-speci�c thresholds could possibly be determined by the disease history or

image features such as the distribution of thickness for a speci�c myocardial wall.

2.2.4.4 Parameter optimisation

Using the registration of image and EP data in the common frame of reference

described in the Methods section, it was possible to de�ne a metric to quantify

di�erences between simulations and ground truths. Using the mean square di�erence

between these data, we therefore optimised the thickness to velocity transfer function

parameters (vmax, vmin, p and r, see �g. 2.8, to minimise the discrepancy between

simulations and recordings. To this end, we used the covariance matrix-evolution

strategy algorithm [Hansen, Müller, and Koumoutsakos 2003], suited for this type

of non-convex optimisation problem. While minimising the mean square di�erence

did improve the numerical matching of the simulations to the recording, the overall

activation pattern actually was often degraded. This is partly due to noise in the

target EP data and to the fact that the mean square di�erence metric may not be

adapted to preserving the activation patterns like the typical �gure of eight shape of

re-entrant VT. How to de�ne this pattern-aware metric is still an open question. The
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Figure 2.12: Diminishing discrepancy between simulations and recordings by tuning

the thickness to velocity transfer function.
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output of the channelness is also highly depending on setting the right parameters

for the objectness mapping, including a channelness threshold. These parameters

should be optimised and validated on a larger multi-centric database.

2.2.4.5 Conclusion: a clinically compatible modelling framework

The simulation framework presented in this article may be useful for EP modelling

to enter clinical practice. It requires little human interaction and expertise to go

from imaging data to EP simulations. It is very fast and would even be faster by

developing implementations more suited to such purpose than the generic ones we

currently use. The availability and reproducibility o�ered by CT images and such

automation could help personalised cardiac modelling to enter clinical applications.

2.2.5 Additional material

Video �Additional material for this article.� is available at https://nicoco.fr/

phd/fig/europace2018/europace2018.mp4

https://nicoco.fr/phd/fig/europace2018/europace2018.mp4
https://nicoco.fr/phd/fig/europace2018/europace2018.mp4
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2.3 Automating the segmentation process

2.3.1 Introduction

Catheter radiofrequency ablation of the ischemic arrhythmogenic substrate has been

shown to be e�cient to prevent sudden cardiac deaths . This e�ciency can partially

be attributed to the integration of information extracted from cardiac imaging data

both prior to and during the intervention [Yamashita, Frédéric Sacher, Mahida, et

al. 2016].

While cardiac magnetic resonance imaging is still widely considered the gold

standard for ischemic scar assessment and model personalisation [Prakosa et al.

2018], computed tomography (CT) has recently gained interest in the electrophys-

iological (EP) community. Cardiac CT is indeed able to locate and evaluate the

ischemic scar heterogeneity [Mahida et al. 2017]. This is possible by identifying

zones of myocardial wall thinning and evaluating the severity of this thinning; this

approach is even able to predict abnormal electrical activity [Yamashita, Frédéric

Sacher, Hooks, et al. 2017; Ghannam Michael et al. 2018]. Moreover, CT is less

a�ected than MRI by the presence of a implantable cardioverter de- �brillator, a

device commonly found in patients susceptible to undergo catheter ablation of ven-

tricular tachycardia.

Given these scar characteristics on CT images, it is no surprise that CT has been

successfully used as a way to personalise EP models [Cedilnik, Duchateau, Dubois,

Frédéric Sacher, et al. 2018]. However, up until now, this personalisation relies on

manual or semi-automated segmentation of the left ventricular (LV) wall, despite

the availability of e�cient three-dimensional medical image automated segmentation

methods [Isensee et al. 2018].

Original CT

Neural Net

LV masks

∇L0 ·
−→
T = 1

−∇L1 ·
−→
T = 1

Thickness
PDE
Solver

Thickness map

v||∇T || = 1

Eikonal
FMM
Solver

Activation map

du
dt = Jin + Jout

AP model
& dipole

formulation

Electrogram

Figure 2.13: The model personalisation pipeline. Orange: image processing steps;

Green: modelling steps
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� � �

convolutions

. .

concatenations

.

Architecture of the U-net used to segment cardiac CT images (green blocks: 3D

features, �: max-pooling, .: up-convolution). A �rst �low-resolution� network is

used to determine the left ventricle location on the original CT image. A cropped

version of the image is then fed to a �high resolution� net. Adapted from [Jia et al.

2018]

In this paper we evaluate the impact of a deep learning automated segmentation

approach on CT ischemic scar assessment and the related model personalisation

framework. This framework (�g. 2.13) takes a cardiac CT image as input. The LV

is automatically segmented using a neural network, allowing myocardial thickness

to be automatically computed [Yezzi and Prince 2003]. After choosing a virtual

pacing point, activation maps can be simulated using the Eikonal model. Finally,

electrograms can be generated through a novel approach presented in section 2.3.2.4.

2.3.2 Methods

2.3.2.1 Deep Learning Segmentation

The deep learning approach we applied is based on a previously described methodol-

ogy to segment the left atrium [Jia et al. 2018]. It relies on the use of two successive

specialised U-nets [Isensee et al. 2018]. The �rst is used to coarsely segment the

full original CT image. Its output is used to compute the bounding box of the re-

gion of interest. This allows a cropping of the original image for a higher resolution

segmentation of the desired structures.

Database and Training The network was trained from scratch using a database

of 500 cardiac manual segmentations of contrast-enhanced CT images. These seg-

mentations comprise the LV endocardium, the LV epicardium and the right ventric-

ular epicardium. We used 450 cases for training per se and 50 cases for validation

with a loss function de�ned as the opposite of a label-wise Dice score. The model was



2.3. Automating the segmentation process 37

�tted using an nVidia GeForce 1080 Ti provided by the NEF computing platform.

�Low Resolution� U-Net The �rst network's input is the original CT image

resampled to 128 × 128 × 128 voxels and it outputs 3 ventricular masks: 2 for

the left ventricle (epicardium and endocardium), 1 epicardial right ventricle. The

training data was augmented twice, by 2 random rotation of the original image along

each axis in the
[
−π

8 ; π8
]
interval.

�High Resolution� U-Net The second network was trained using cropped CT

images around the LV, with 5 mm margins and resampled to 144×144×144 voxels.

Each original image was augmented 20 times: by random rotations in the
[
−π

7 ; π7
]

range along each axis, a random shearing in the [−0.1; 0.1] range along each axis and

the application of Gaussian blur with a kernel using a random standard deviation

picked in the [0.5; 2] range for half of the augmentations. The network outputs are

the two left ventricular masks.

Post-processing The network's outputs were thresholded at 0.5. In order to

obtain spatially coherent masks, they were �ltered to keep only the largest connected

component and to forbid overlap between masks. Remaining holes in the masks were

�lled using the most frequent label in the hole neighbourhood. The masks were

�nally up-sampled to the original CT image resolution using a nearest neighbour

interpolation.

2.3.2.2 Thickness Computation

Smooth and robust LV wall thickness estimation is not trivial, especially in three

dimensions. It indeed requires to solve a partial di�erential equation using the

endocardium and epicardum masks [Yezzi and Prince 2003]. Such approach, which

assign a thickness value to each voxel of the LV wall mask, is particularly adapted

for simulations on regular grids; it has been previously used to such ends [Cedilnik,

Duchateau, Dubois, Frédéric Sacher, et al. 2018].

2.3.2.3 Electrophysiological Model

We used the thickness information to parameterise an Eikonal model previously

described in [Cedilnik, Duchateau, Dubois, Frédéric Sacher, et al. 2018]. Brie�y,

wall thinning is related to a macroscopic slowing of the activation front, due to a

microscopic zig-zag course of activation in the infarcted tissue . A random pacing

point was chosen in the healthy tissue, de�ned by a wall thickness superior to 5 mm,

to initiate the propagation. The simulation was stopped at 500 ms.

2.3.2.4 Electrogram Simulation with the Eikonal Model

We propose an e�cient way to simulate electrograms with the Eikonal model. It

couples the activation map with a transmembrane action potential model and a
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propagation methodology based on the dipole formulation [Gi�ard-Roisin, Fovargue,

et al. 2016]. In this framework, every voxel is a considered a dipole with local current

density:

jeq = −σ∇v, (2.3)

where σ is the local conductivity and

∇v is the spatial gradient of the potential v. Using the chain rule, we can rewrite
eq. 2.3 as:

jeq = −σ ∂v
∂T
× ∂T

∂X
= −σ ∂v

∂T
∇T,

where ∇T is the gradient of the activation map (output of the Eikonal model).

To compute ∂v
∂T , we used a forward Euler scheme to solve the Mitchell-Schae�er

cardiomyocite action potential model [Mitchell and Schae�er 2003] and stored its

time derivative. We matched the activation time obtained with this model to the

activation time obtained with the Eikonal model. To simulate bipolar electrograms,

we placed two virtual electrodes (distance between them: 0.9 mm) inside the heart

cavity and subtracted one signal to the other.

In order to handle the activation map gradient values at the mask boundaries, we

ignored the gradient component(s) in the direction(s) �owing out of the mask. We

adapted the volume used in the dipole moment computation accordingly [Gi�ard-

Roisin, Fovargue, et al. 2016].

2.3.2.5 Evaluation of the Automated Segmentation Impact

In order to evaluate the automated segmentation impact, we focused on 8 cardiac CT

images (and their corresponding manual segmentation) of patients su�ering of re-

entrant VT. Theses images have been used neither for the automated segmentation

training nor its validation. For 6 cases (patients 1-6) the original CT images were

available; for the remaining 2 cases, resampled images aligned to the heart short

axis were used.

Binary masks were resampled to the original CT image resolution when available,

in order to compute a Dice score on the LV wall.

To compare thickness and activation maps, a mid wall mesh was generated

from the manual wall segmentation. Maps corresponding to manual and automated

segmentation were then projected on this common frame of reference. A point-wise

comparison was made possible this way, and median di�erences were computed.

To compare the electrograms obtained with both segmentation methods, they

were compared with a Pearson correlation coe�cient r.
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Figure 2.14: Visual comparison of manual (middle) and automated (right) segmen-

tations of the left ventricular wall shown on one slice of a CT that was not used

during the DL network's �tting.

2.3.3 Results

2.3.3.1 Segmentation

The training phase of the �high resolution� network reached a plateau at a Dice

score of 0.96 for the LV wall. Data augmentation was key to reaching this high

score, especially adding the blur �lter.

The median Dice score of the 8 images after up-sampling was lower: 0.90. There

is no notable di�erence in the segmentation quality when using original CT images

versus short-axis resampled images.

In zones of extreme thinning, the wall continuity was not always observed.

2.3.3.2 Thickness Computation

Across all cases, the median thickness of the manually segmented walls was 5.8 ± 3.2

mm versus 5.8 ± 3.0 mm for the automatic segmentation. Very sim- ilar thickness

maps were obtained using the automated segmentation (median di�erences across

all cases: 0.7 mm, see �g. 2.15).

2.3.3.3 Eikonal Model

Table 2.1: [Left] Segmentation quality. DCS: dice score; HD: Hausdor� Distance;

ADH: Average Hausdor� Distance; TD: Thickness Median Di�erence. [Right] Model

robustness: di�erence between outputs from manual and automated segmentation.

LATD: Local Activation Time Median Di�erence; EGr: Pearson's r coe�cient be-

tween electrograms (p < 10− 10 for all patients)

Patient DSC HD (mm) AHD (mm) TD (mm) LATD (ms) EGr

1 0.88 19.15 0.10 0.7 5 0.99

4 0.90 17.47 0.09 0.8 2 0.99
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Patient DSC HD (mm) AHD (mm) TD (mm) LATD (ms) EGr

5 0.87 13.25 0.09 0.8 3 0.99

6 0.91 5.00 0.05 0.5 1 1.00

7 0.91 16.44 0.06 0.6 1 1.00

8 0.88 7.57 0.09 1.4 29 0.75

9 0.89 22.86 0.11 0.7 2 0.94

10 0.91 12.71 0.08 0.7 1 0.99

median 0.90 14.85 0.09 0.7 2 0.99

As expected, given similar thickness maps and geometries, the �virtual pacing� re-

sults were very close. The median activation time of the manual segmentation

models was 143 ms, with a median di�erence with automated segmentation as little

as 2 ms across all cases.

2.3.3.4 Electrogram Simulations

Bipolar signals generated with the automated and manual segmentations were vir-

tually identical, with a median Pearson's r correlation coe�cient of 0.99. All rs

were above 0.94 except one (patient 8, 0.72), and all had p-values below 10−10.

2.3.4 Discussion

2.3.4.1 Segmentation

The automated segmentation algorithm was shown to produce segmentation very

close to those obtained by trained radiologists, even with di�erent orientations of

the input images. A perfect match between the algorithm and expert segmentation

is not desirable anyway as there is also uncertainty in the manual segmentation.

The available automated segmentation can probably be improved by training the

neural networks on GPUs with more RAM, allowing a better input resolution and

less loss of information in the down-sampling phase.

2.3.4.2 Thickness

The di�erences in the corresponding thickness maps are even smaller. Scar hetero-

geneity is preserved and comparable between manual and automated segmentation.

In some particular cases of wall con�guration (holes within the wall. . . ) the thick-

ness computation could be problematic but it only happens in very localised cases

which were easy to identify.

Ideally it would have been preferable to compare scar localization on MRI images,

but they were not available for these patients.
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2.3.4.3 Modelling

As expected, similarity of thickness maps leads to very similar simulation output

between the automated and manual segmentation. The wall discontinuities are

not problematic at all since they concern zones of extreme wall thinning that are

considered non conductive anyway. These explain most of the discrepancy between

the resulting activation maps.

2.3.5 Conclusion

We presented in this manuscript the automatic segmentation of the myocardial wall

in CT images and the quanti�cation of its impact on personalised models. We

showed that most of the infarct related arrhythmia information extraction from

CT images are not a�ected much by using an automated segmentation methodol-

ogy, proving its robustness. This is another major step towards the future use of

EP model personalisation in clinical practice. Furthermore, we presented a novel

methodology to generate electrograms from activation maps using the Eikonal model

and the dipole formulation. Here we used the same action potential characteristics

across the whole domain, but our formulation makes it possible to easily vary them,

using the LV wall thickness for instance. Filtering the signals obtained in the same

way they are �ltered in the EP lab could further improve their realism.
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Eikonal Model Personalisation Using Invasive
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Therapy Electrophysiological Response
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2.4 Piggy-CRT

2.4.1 Introduction

For our participation in the STACOM piggyCRT challenge, we decided to use the

Eikonal model of cardiac electrophysiology (EP). Using the fast marching method,

simulations using this model are very fast to solve, which makes them both partic-

ularly suited to a clinical work�ow [Cedilnik, Duchateau, Dubois, Frédéric Sacher,

et al. 2018] and easy to personalise. Moreover, as we are only interested in local

activation times, the Eikonal model is relevant.

We determined the optimal parameters for this model, i.e., the parameters that

minimise the discrepancy between the recorded and the simulated pre-cardiac resyn-

chronisation therapy (CRT) activation maps, for each pig. This model personalisa-

tion was then used to predict the post-CRT activation maps using the same param-

eters (except for the initialisation of the propagation).

2.4.2 Model personalization: general framework

2.4.2.1 Eikonal model

The Eikonal model of cardiac electrophysiology outputs an activation map, i.e.,

local activation times (LATs) and is de�ned as follows:

v
√
∇T tD∇T = 1 (2.4)

where T is the local activation time, v is the local conduction velocity and D

the anisotropic tensor to account for the �bre orientation. We experimented both

with �bre orientations generated using the classic Streeter model and the provided

OTRBM model.

To make it possible to use multiple onset locations with di�erent delays, we ran

one simulation Ti for each onset i. We then added the desired onset delay di to the

whole activation map and combined them into a �nal activation map by choosing

the minimal LAT for each element X of the domain Ω:

T�nal = min
∀X∈Ω

(T1(X) + d1, T2(X) + d2, ...) (2.5)
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Figure 2.16: An example of domain division. yellow: wall, red: RV endocardium,

green: RV endocardium, purple: connective tissue (outside the domain)

Instead of solving the equation on the unstructured grid provided by the chal-

lenge, we decided to voxelise them, i.e., to de�ne the domain on a regular lattice of

1 cubic millimetre resolution. Two reasons motivated this choice:

� morphological information on an individual heart is generally obtained from

the segmentation of imaging data, which is naturally of this form,

� the fast marching method is faster on Cartesian grids.

As for the implementation, we used open-source fast marching routines available

online [Mirebeau 2017].

2.4.2.2 Parameters �tting with CMA-ES

We used the covariance matrix adaptation - evolution strategy (CMA-ES) [Hansen,

Akimoto, and Baudis 2019] genetic algorithm to �t our model parameters to the

recorded EP maps. This approach has been used before for a similar challenge

[Gi�ard-Roisin, Fovargue, et al. 2016], and is well suited for multi-parameters, non-

convex optimization problems.

We chose to minimise the root median square di�erence between the recorded

data and the simulation output. This choice is justi�ed by the noise on the training

data probably due to the acquisition itself and to its registration on the image-

derived myocardial geometry. This could lead to outliers driving the root mean

square error.

2.4.3 Velocities and domain division

Given this framework, the main parameter that we tried to personalise was the local

conduction velocity. But what is the optimal domain decomposition to de�ne the

number of local parameters to estimate?

Using di�erent velocities for each voxel would both be impractical (too many

parameters to optimise) and does not make sense from a physiological standpoint.

Moreover, it would probably result in massive over-�tting to the pre-CRT maps with

lower predictive power.
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Figure 2.17: Determination of onset locations for pre-CRT maps

Keeping this in mind, we �rst tried to optimise a global speed for the whole

domain, but also tried by individualising:

� both endocardia to capture both the Purkinje network (PN) and the left bun-

dle branch block in�uences,

� both ventricle walls, for the same reason,

� the septum, for the same reason and because propagation through the septum

could be much slower due to �bre orientation,

� the scar if present,

� the 17 AHA segments of the left ventricle (LV), to determine if this would be

bene�cial for the personalisation.

As the optimisation process is reasonably fast with our framework, we decided

to test several combinations of these �velocity zones�, as shown in �g. 2.20.

2.4.4 Onsets

Besides the local propagation velocity, the Eikonal model requires to specify starting

points for the wave front propagation. Choosing such points for the pre-CRT sinus

rhythm maps is not trivial at all.

2.4.4.1 Locations

Ideally, the simulated pre-CRT maps should use the atrio-ventricular (AV) node

as unique onset. We �rst tried to parameterise our model in such a way, but this

approach rapidly proved very ine�cient due to the massive in�uence of the sep-

tomarginal trabecula (ST) in the activation of the right ventricle (RV). As a con-

sequence, it seemed more reasonable to use two di�erent onsets, both in the RV
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Figure 2.18: Combinations of onset radius and wall speed that result in the best

match between simulation and EP data. Endocardial speed was here set to 3 m/s,

scar speed to 0.1 m/s.

endocardial layer. Unfortunately, the pre-CRT maps did not include any EP study

of the RV endocardial surface.

To overcome this limitation of the personalisation data, we chose the centre of

gravity of all the points whose pre-CRT LATs were below the second percentile of a

given area and picked the closest RV endocardium point. Picking up the point with

the smallest LAT may sound more relevant, but because of the propagation spread,

likely due to the PN, the simulations �t better using the �percentile� way (more on

this in ) This was done for both the LV area, approximately locating the LV onset

and the RV area, approximately locating the ST epicardial exit point, as illustrated

in �g. 2.17.

2.4.4.2 Delays

To determine the delays associated to these onsets eq. 2.5 we proceeded as follows:

1. Run an Eikonal simulation (eq. 2.4) for each onset location.

2. Choose the delay such that the lowest LAT of the simulation match the data,

respectively for the LV endocardium (LV onset) and the RV epicardium (ST

epicardial breakthrough).

2.4.4.3 Radii

Picking unique points for the onsets caused the optimisation to converge on unreal-

istically fast velocities to compensate for the spreading of the early activation due

to the PN. It seemed logical to overcome this di�culty by �dilating� our onsets. To

chose the radius of these dilations, we conducted the following study:

1. We �xed the endocardial velocity as 3 m/s and scar velocity at 0.1 m/s.
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Figure 2.19: From left to right: recorded pre-CRT activation map, our model

with �tted parameters, recorded post-CRT activation map, our model's prediction.

Colours indicate LATs in ms.

2. We experimented a wide array of velocities for the rest of the domain, between

0.5 and 4 m/s.

3. For each velocity, we tested di�erent onset radii, between 0 and 30 mm.

4. We looked for the optimal myocardial velocity/onset radius combination, i.e.,

to combination that minimised the median square root error between the EP

data and simulations.

The results of this study are shown on �g. 2.18.

Empirically, we could determine that an onset radius of 10 mm for the pre-CRT

simulations and 2 mm for the post-CRT simulations allowed physiology-compatible

velocities.

2.4.5 Constraints

We had to de�ne parameter bounds for the optimisation process. We experimented

with 3 types of regional constraints:

1. �Physiological�: vscar ∈ [0, 0.5], vwall ∈ [0.5, 1], vendo ∈ [1, 4]

2. �Loose�: vscar ∈ [0, 1], vwall ∈ [0.5, 2], vendo ∈ [1, 6], to take into account the

fact that the scar might be coarsely located

3. �No constraints�: v ∈ [0.1, 4]

To add a con�dence estimation and to evaluate to the relevance of the �bre

orientation, the anisotropy ratio, de�ned as the ratio between the velocity in the

transverse plane and the velocity in the �bre direction was also optimised: r ∈
[0.2, 1].

2.4.6 Results

An example of �tting and prediction is shown on �g. 2.19.
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2.4.6.1 Performance

The preCRT �t and CRT response prediction performances of the di�erent con-

straints and domain divisions are shown in �g. 2.20 Pre-CRT �t ranged from 9 to 17

ms of median square root di�erence, while post-CRT prediction performance ranged

from 7 to 22 ms.

As expected, a very good preCRT �t is not correlated with a better postCRT

prediction, but seems to rather be a sign of over-�tting.

The best approach in terms of prediction performance seems to be using OTRBM

�bres and di�erent speeds for both ventricles and both endocardia.

2.4.6.2 Parameters �tting

Taking a closer look at the optimal parameters, we realised that �physiological�

constraints were too strict: best parameters were virtually always 4 m/s for both

endocardia and 1 m/s for both walls.

In these conditions, personalisation did not seem to be really interesting and

this is what motivated our experiments with �loose� constraints. As can be seen in

�g. 2.21 and 2.22, this approach made proper personalisation possible.

2.4.7 Discussion

As we were given a very small dataset (3 post-CRT maps) to evaluate the prediction

performance, it is really di�cult to draw conclusions as to which approach really

provides the best personalisation. However it seems clear that dividing the domain

in small zones, e.g. the LV AHA segments is both detrimental to the prediction

performance and the personalisation duration. We lacked time to explore other

parameters combination, for instance, di�erent anisotropy ratios by domain division

or even looser constraints.

Our main contribution probably lies in the way we de�ned the onsets for the

pre-CRT simulations and the fast framework proposed. In a clinical setting, person-

alisation could probably be enhanced with imaging data [Camara et al. 2011; Chen

et al. 2016] and possibly ECGI data, and CRT response has to be evaluated with

mechanical simulations [Sermesant, Chabiniok, et al. 2012].



2.4. Piggy-CRT 49

0
5

10
15

20
25

m
ea

n 
(±

 st
d)

 a
cr

os
s a

ll 
ca

se
s o

f m
ed

ia
n 

sq
ua

re
 ro

ot
 e

rro
r (

m
illi

se
co

nd
s)

OT
RB

M
, L

V/
RV

/L
Ve

nd
o/

RV
en

do
/s

ca
r (

l)

St
re

et
er

, w
al

l (
c)

St
re

et
er

, w
al

l/L
Ve

nd
o/

RV
en

do
/s

ca
r (

l)

OT
RB

M
, w

al
l/s

ep
tu

m
/L

Ve
nd

o/
RV

en
do

OT
RB

M
, L

V/
RV

/L
Ve

nd
o/

RV
en

do

OT
RB

M
, w

al
l/L

Ve
nd

o/
RV

en
do

/s
ca

r (
l)

St
re

et
er

, w
al

l/L
Ve

nd
o/

RV
en

do
/s

ca
r

OT
RB

M
, L

V/
RV

/L
Ve

nd
o/

RV
en

do
 (l

)

St
re

et
er

, L
V/

RV
/L

Ve
nd

o/
RV

en
do

 (c
)

OT
RB

M
, w

al
l (

c)

St
re

et
er

, L
V/

RV
/L

Ve
nd

o/
RV

en
do

 (l
)

St
re

et
er

, L
V/

RV
/L

Ve
nd

o/
RV

en
do

/s
ca

r (
l)

St
re

et
er

, w
al

l/L
Ve

nd
o/

RV
en

do
/s

ca
r (

c)

St
re

et
er

, w
al

l/s
ep

tu
m

/L
Ve

nd
o/

RV
en

do

St
re

et
er

, L
VA

HA
/R

V/
LV

en
do

/R
Ve

nd
o/

sc
ar

 (c
)

St
re

et
er

, L
V/

RV
/L

Ve
nd

o/
RV

en
do

OT
RB

M
, w

al
l/L

Ve
nd

o/
RV

en
do

/s
ca

r

St
re

et
er

, w
al

l/s
ep

tu
m

/L
Ve

nd
o/

RV
en

do
 (c

)

OT
RB

M
, L

V/
RV

/L
Ve

nd
o/

RV
en

do
 (c

)

OT
RB

M
, L

VA
HA

/R
V/

LV
en

do
/R

Ve
nd

o/
sc

ar
 (c

)

OT
RB

M
, w

al
l/L

Ve
nd

o/
RV

en
do

/s
ca

r (
c)

OT
RB

M
, w

al
l/s

ep
tu

m
/L

Ve
nd

o/
RV

en
do

 (c
)

(c
): 

co
ns

tra
in

ts
, (

l):
 lo

os
e 

co
ns

tra
in

ts

Pe
rfo

rm
an

ce
 o

f a
ll 

te
st

ed
 p

er
so

na
liz

at
io

n 
m

et
ho

ds

po
st

CR
T 

pr
ed

ict
io

n
pr

eC
RT

 fi
t

Figure 2.20: Fitting and prediction performance of the di�erent domain divisions

we experimented
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parameters (resp. the loss).
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We believe our exploration of the Eikonal models in chapter 2 makes a strong

case for the validity of CT imaging as a personalisation support for ischaemic VT

simulations. These very fast-to-compute models, however, lack the ability to ef-

fectively simulate the re-entry phenomenon. Besides that, the increase of compu-

tational power, notably due to graphics processing units (GPUs), now permits to

run mono-domain simulations of cardiac EP in a clinically compatible time frame.

This is why we set out to explore such model personalisation based on cardiac CT

imaging.

The Eikonal models we presented do not require information about the cardiac

action potential variations (section 1.1.1.3), only its apparent propagation velocity

(except when used to simulate electrograms in section 2.3.2.4). Reaction-di�usion

models, however, must be parameterised with more details to reproduce the be-

haviour of cardiomyocytes exhibiting an action potential.

One of the main elements of this behaviour is the repolarisation of the cardiac

tissue, i.e., the transition between phase 3 and phase 4 (�g. 1.3) of the cardiac action
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Figure 3.1: Electrical restitution curve of a cardiomyocyte. The action po-

tential duration is a function of the preceding diastolic interval. Here we represented

the electrical restitution curve obtained with a mathematical model of cardiac ac-

tion potential [Mitchell and Schae�er 2003]. Restitution curves obtained in vivo can

exhibit a spike at small DIs before reaching the plateau phase [Franz 2003].

potential (AP). It corresponds to the process by which the cardiomyocyte cellular

membrane goes back to its resting potential, i.e., back to a state where it can be

excited again. It is responsible for the absolute refractory period of cardiomyocytes,

which is itself linked to the e�ective refractory period. This phenomenon is of crucial

importance for the arrhythmia this PhD manuscript focuses on [Pak et al. 2004]. It

has been and is still being studied in vitro, in vivo and in silico [Relan 2013; Relan,

Chinchapatnam, et al. 2011].

The duration between the start of phase 1 and the end of phase 3 is called the

action potential duration (APD). A known property of the heart cells is that the

APD is related to the duration between the end of phase 3 of the previous AP

and the start of phase 1 of the next AP: the diastolic interval (DI). This is one

of the many mechanisms by which the heart adapts to variations in pace, along

with changes in its mechanical properties, e.g., its contractility. APD can thus be

described as a function of DI to constitute electrical restitution curves (RC, �g. 3.1),

something that was historically described in the the cat [Bass 1975]. RCs have an

initial steep curve at short DIs before an asymptotic rise to reach a plateau at long

DIs. Whether this initial steepness is pro or anti-arrhythmogenic is debated [Franz

2003].

Investigating APDs and RCs directly is very di�cult in vivo, but is has been

shown that the activation-recovery interval (ARI), or time (ART), observable on

unipolar electrograms (UEGs), is a good surrogate of the APD [Xia et al. 2005].

In this chapter, using the data available to us, we investigated the restitution

properties of the human heart in terms of APD, in healthy and infarcted areas.

Our main contributions in this chapter are:

� an algorithm to determine the start and the end of the depolarisation complex

on unipolar electrograms (section 3.2.3),
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� a methodology to discriminate positive, negative and biphasic depolarisation

waves on unipolar electrograms (section 3.2.4.2),

� a relationship between CT wall thickness and action potential duration (sec-

tion 3.4.2).

3.1 Data

We studied 27 EP maps, including sinus rhythms (SR), controlled pacing from the

left ventricle (LV), implantable cardioverter-de�brillator (ICD), right ventricle (RV),

and ventricular tachycardia (VT) recordings from 7 di�erent patients who underwent

radio-frequency ablation of re-entrant VT. All these maps are listed in table 3.1.

The maps are constituted by a list of 3D coordinates corresponding to a point

cloud labelled �Surface Electrodes� by the Rhythmia mapping system. Unipolar,

bipolar electrograms and standard 12-lead ECGs were associated with each of these

points, sampled at 953.674 kHz.

Each map was manually associated with a global cycle length (CL) ranging from

360 to 1007 milliseconds. This annotation was easy on controlled pacing maps where

more than one stimulation artefact was visible on the bipolar trace and on VT maps

that all covered more than one cycle length. For SR maps, the global cycle length

was determined by using either the bipolar trace, or the 12 lead surface electrode

trace after examining the traces for di�erent points until �nding one where two

depolarisations were visible.

Most maps were recorded in the left ventricular cavity, except for patient #3.

For this patient, the maps where epicardial recordings covering parts of both the

left and right ventricle.

3.1.1 Inclusions

Some of these maps were already exploited in chapter 2 but new ones acquired under

similar conditions were added, mostly sinus rhythm maps that we did not aim to

reproduce with the Eikonal model presented in the previous section.

These maps were registered to CT data using the low-voltage/CT wall thinning

relationship [Ghannam Michael et al. 2018]. CT thickness information was then

projected on EP data using spherical coordinates, symmetrically to what is shown

on �g. 2.9.

3.1.2 Exclusions

Some maps shown in chapter 2 could not be analysed: they did not include UEGs

because of the format they were exported in from the EP console. Two LV paced

maps had to be excluded because the stimulation artefacts disturbed the UEGs in

a way that made the repolarisation wave detection not doable.
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Figure 3.2: Depolarisation detection. (1) Stimulation artefacts are removed

(section 3.2.1). (2) A butterworth �lter is applied (section 3.2.2). (3) Depolarisations

are detected on the time derivative of the UEG as negative peaks (section 3.2.3.1).

Here the second depolarisation peak is kept (not represented) because its height is

more than 50% the height of the other depolarisation peak. (4) Starts and ends of

the depolarisation complexes are detected using the adaptative plateau algorithm

(section 3.2.3.2).

3.2 Activation/recovery time detection

3.2.1 Artefact handling

9 maps presented UEGs where stimulation artefacts were clearly visible and would

have disturbed the depolarisation and repolarisation detection. The timings of these

artefacts were manually annotated.

Since we would then analyse the derivative of the UEGs, we minimised the

impact of these artefacts by linearly interpolating the UEG from 10 samples before

to 10 samples after the artefact annotation

An example of (small) artefact can be visualised on the raw UEG trace in �g. 3.2

and other similar traces in �g. 3.5.

3.2.2 De-noising �lter

Upon manual examination, we estimated that the UEGs were too noisy to be anal-

ysed without �ltering. After empirical tuning, we found that applying a low-pass

Butterworth �lter of order 7 at 30 Hz was adapted to our analysis. The �lter was

applied after the artefact handling described in section 3.2.1.

We used the �ltering implementation of the Biosppy 1 package which is an easy-

to-use wrapper around the SciPy [Virtanen et al. 2020] �ltering routines.

This impact of this �lter can be visualised in �g. 3.2 and �g. 3.5.

1https://biosppy.readthedocs.io

https://biosppy.readthedocs.io
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3.2.3 Depolarisation detection

3.2.3.1 Depolarisation time

The derivative of the �ltered, stimulation artefact-free, UEG was computed using

second order accurate central di�erences, using the gradient implementation of the

NumPy package [Harris et al. 2020].

In order to identify the depolarisation wave, we searched for the lowest negative

peaks in this derivative [Chen P S et al. 1991] using the find_peaks method of the

SciPy package, with a minimum distance of 250 samples. The distance parameter

�lters out peaks that are closer than the minimum distance based on peak (negative)

height. After this �lter, we applied a custom peak �ltering resulting in the exclusion

of peaks with heights inferior than half the height of the highest peak.

We found that this approach allowed to successfully identify depolarisation waves

and distinguish them from the repolarisation waves, which are much �atter than

depolarisation waves. This is a consequence of phase 0 of AP being much steeper

than phase 3.

When two depolarisations were detected, we took the timing of the �rst one as

the depolarisation time. This allowed us to search for the repolarisation wave in a

satisfying window.

When three depolarisations were detected, we took the timing of the second

one as the depolarisation time. This had the advantage of having both a satisfying

repolarisation window and the actual cycle length of the previous depolarisation.

3.2.3.2 Depolarisation complex window

While detecting the depolarisation time was quite robust, it was more complicated to

detect the start and the end of the depolarisation complex. Searching for the point

where the UEG goes back to zero mV is ine�cient for several reasons illustrated on

�g. 3.2 and 3.5:

1. the baseline is not always zero,

2. a lot of UEGs are slightly fragmented either before or after the actual maxi-

mum dv
dt and these bumps should not be considered as part of the repolarisa-

tion.

Our idea was then to �nd the plateau of the UEG, that we de�ned as the absolute

value of derivative being below a certain threshold for a certain number of consec-

utive samples. Since it was impossible to de�ne such threshold in a homogeneous

way for all UEGs, we proposed the following �adaptive plateau �nding� algorithm.

Inputs:

� v: UEG

� lo, hi: minimum and maximum indices for the start of plateau
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� min_consecutive_samples: minimum number of consecutive samples where

absolute derivative has to be below a certain threshold

� max_iter: maximum number of iterations where the tolerance is raised

� t_i: initial threshold to consider the derivative almost zero

Output: index of the start of plateau

Procedure:

x ← |dvdt |
threshold ← initial_threshold

hi_search ← hi + min_consecutive_samples

result ← -1

iter ← 0

for iter from 0 to max_iter do

n_almost_zeros ← 0

for idx from lo to hi_search do

if x[idx] < threshold, then

n_almost_zeros ← n_almost_zeros + 1

if n_almost_zeros = min_consecutive_samples then

return result - min_consecutive_samples

end if

else

n_almost_zeros ← 0

end if

threshold ← threshold + initial_threshold

end for

end for

return hi

The start and end of the depolarisation complex were searched from 25 to 200

samples after (respectively before) the depolarisation time, with an initial threshold

of 0.005 mV·sample−1, a minimum consecutive samples of 20 and a maximum num-

ber of iterations set to 1000. The maximum number of iterations was reached less

than 50 times across all analysed UEGs, making the impact of such UEGs negligible.

The algorithm was implemented in python, sped up with the just-in-time com-

piler Numba [Lam, Pitrou, and Seibert 2015] in order to make possible the analysis

of about 300,000 signals in a reasonable time (less than 1 hour) on a standard

desktop computer.

3.2.4 Repolarisation detection

3.2.4.1 Detection window

The repolarisation wave detection window was always set to start as the end of

depolarisation complex described in section 3.2.3.2. When more than one depolar-
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Figure 3.3: Positive repolarisation wave detection. Here, both a positive

(green) and negative (red) potential repolarisation waves were detected. Since there

were no zero crossings of the derivative between both peaks (red and green vertical

lines), the UEG was not immediately excluded. However, the negative peak was

then excluded on the criterion of area under curve.

isation were visible on the UEG, the end of the window was set at the start of the

following depolarisation complex.

When there was only one visible depolarisation, we used the global cycle length of

the map to �x the end of the repolarisation wave detection as follows: windowend =

depoltime + CL− 100.

In some cases where the depolarisation was late on the UEG, there was a high

probability that the repolarisation wave was not captured. We excluded such UEGs,

using the following rule: if windowend was equal to the number of samples and the

detection window was narrower than minimum(CL/2, 300 samples).

3.2.4.2 Repolarisation waves polarities

In this detection window, we used the find_peaks function of the SciPy package

to search for all positive and negative peaks with a minimum width of 5 samples,

and a minimum height of 0, see for �g. 3.3 for an example. The minimum height

parameter �lters out peaks that are only relatively positive (respectively negative)

to their surroundings and only allows peaks where the UEG is actually positive

(respectively negative). The minimum width parameter was used to avoid over-

detection of high frequency bumps that slipped through the �ltering process.

Peaks that were closer than 25 samples from the detection window were excluded.

The area under curve (AUC) of each of these peaks were computed from the left bases

to the right bases of the peaks.2 Only the positive parts of the UEG were used for the

AUC calculation for positive peaks and reciprocally for negative peaks, making the

2Refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_

peaks.html for the de�nition of a peak's bases.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
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AUC computation window sometimes actually narrower than the window de�ned

by the left and right bases of a peak.

The peak �ltering described above is mostly relative, resulting in a lot of cases

where both a positive and a negative repolarisation waves were detected. In conse-

quence, since most of these detections did not re�ect a real biphasic repolarisation

wave, we discriminated actual biphasic repolarisation waves from bogus detections

using the following procedure:

1. We computed the number of peaks between the two peaks, by �nding the num-

ber of zero-crossings with hysteresis (with a tolerance of 0.001 mV·samples−1)

of the derivative of the UEG between the two peaks. In case this number was

above 1, this was the sign of a wandering signal in the repolarisation window

and the UEG was excluded.

2. If there were no peaks between the positive and the negative peak, and one

had an AUC more than 3 times the AUC of the other one, the peak with the

smallest AUC was excluded. These repolarisation waves are annotated �Auc�

in �g. 3.4.

3. If none of these criteria were met, but the positive peak preceded the negative

peak, the peak with the smallest AUC was exluded, because to our knowl-

edge, such �reverse biphasic peaks� have not been described anywhere in the

literature. Such peaks are marked as �Bi� in �g. 3.4.

After fusion of the repolarisation waves on the left part of �g. 3.4, we can see

on the right part that the positive repolarisation waves correspond to the early

repolarisation sites, and the negative repolarisation waves to the late repolarisation

sites, in agreement with what is found in the litterature [Relan, Chinchapatnam,

et al. 2011; Potse et al. 2009]. It is worth noting that the median ARI of biphasic

waves is between positive and negative wave. We believe this should be interpreted

as an argument to validate our methodology (section 3.2.4.2) to distinguish actual

biphasic waves from bogus detections.

3.2.4.3 Repolarisation time

There are two main approaches to detect the repolarisation time. The Wyatt [Wyatt

et al. 1981] method was the �rst to be proposed and relies on taking the maximum
dv
dt for all three types of repolarisation waves. An �alternative method� [Chen P S

et al. 1991] that treats repolarisation waves di�erently based on their polarities was

then proposed. However, the recent consensus seems to be that the Wyatt method

is the most accurate to detect the repolarisation time [Orini Michele et al. 2019].

To implement this detection, we searched for the highest value of the derivative

of the UEG computed as described in section 3.2.3.1. The window of this detection

was set between the left base (see section 3.2.4.2) of the peak and the peak itself
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Figure 3.4: ARI distribution by repolarisation wave polarity. On the left

part, negative repolarisation wave �subtypes� are labelled in blue, and positive �sub-

types� in red. On the right part, box and whisker plots represent fusions of the

subtypes of the left part. Number between parentheses are the number of ARIs

with the associated subtype. The box extends from the lower to upper quartile

values of the data, with a line at the median. The whiskers extend from the box to

show the range of the data. The lower whisker is at the lowest datum above Q1 -

whisÖ(Q3-Q1), and the upper whisker at the highest datum below Q3 + whisÖ(Q3-

Q1), where Q1 and Q3 are the �rst and third quartiles. Outliers outside of whiskers

are not plotted here. Created with Matplotlib [Hunter 2007]
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for positive repolarisation waves, between the peak and its right base for the nega-

tive repolarisation waves, and between the negative and positive peaks for biphasic

repolarisation waves.

A special case had to be created for bogus detections of negative T waves in

rapid rhythms. In case the repolarisation time was less than 25 samples before the

end of the detection window, the UEG was annotated as �TOO_CLOSE� (�g. 3.5)

and was excluded.

Finally, ARIs below 100 ms and above 500 ms were considered bogus detections

and were excluded.

3.3 Analysis

3.3.1 Per maps

3.3.1.1 Detection quality

Table 3.1: Number of ARIs analysed for each map, their median values, the global

cycle length, and the percentage of UEGs that were excluded from the analysis

because our detection method failed to identify either the depolarisation or the

repolarisation wave with the methodology described in section 3.2.

Patient Rhythm n ARI Median ARI (ms) CL (ms) %na

1 sinusal 4662 242 600 0.52

rv paced 6336 245 600 0.1

sinusal 2797 316 860 0.26

vt 7790 213 504 0.26

2 sinusal 1921 384 930 0.38

vt 3417 228 453 0.59

3 vt 34173 172 410 0.35

sinusal 37029 302 911 0.15

4 sinusal 7281 273 1007 0.22

rv paced 2939 222 600 0.2

vt 1600 245 534 0.23

vt 183 210 548 0.2

sinusal 1398 266 650 0.61

6 sinusal 9290 303 700 0.31

rv paced 8885 281 600 0.21

vt 246 152 386 0.75

7 vt 17640 269 570 0.27

sinusal 4754 225 600 0.46

vt 2328 178 360 0.92

8 sinusal 3977 267 720 0.41

vt 858 222 452 0.51
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Patient Rhythm n ARI Median ARI (ms) CL (ms) %na

icd paced 4873 258 754 0.1

vt 4430 219 442 0.35

9 cs paced 5668 222 597 0.32

vt 7930 207 527 0.15

rv paced 5584 241 536 0.13

lv paced 7807 213 600 0.14

As can be seen in table 3.1, detecting valid ARIs was very challenging for rapid ven-

tricular rhythms, and many UEGs ended up being excluded for such maps. This is

explained by the very short window in which the repolarisation waves were searched.

This can be attributed to two phenomena illustrated in �g. 3.5

1. Quite often a positive repolarisation wave is indistinguishable from the positive

part of the depolarisation complex, making the repolarisation wave very hard

(or impossible) to identify.

2. A very late negative pseudo repolarisation wave is almost always detected. It

is very unlikely that this is the actual repolarisation wave of the underlying

tissue, and most likely an in�uence of the far �eld and or the beginning of

the next depolarisation complex. This is what motivated the special case

�TOO_CLOSE� described in section 3.2.4.3.

The other type of challenging maps are the sinus rhythm maps. We attribute the

number of UEG exclusions in this type of slow maps to the fact that despite their

long cycle length, the UEG recording window was often centred on the depolarisation

and the repolarisation wave could not always be seen.

3.3.1.2 Median ARIs

Median values of ARIs for each map are presented both in table 3.1 and �g. 3.6.

Despite a probably high number of false detections, there seems to be a quite

visible relationship between the cycle length and the median ARI detected in each

map. We believe this is an argument for the validity of our detection methodology.

3.3.2 APD restitution variations with CT wall thickness

3.3.2.1 Regression strategies

After the automated detection process, we ended up with nearly 200,000 couples

(CLs, ARIs). This raw point cloud can be visualised on the top row of �g. 3.8.

Our goal was to determine whether there are di�erences between healthy and

scarred myocardium in terms of APDs, but also in terms of response to changes in

cycle length. We explored this relationship using 3 di�erent formulations.
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Figure 3.5: Examples of ARI detection with our methodology illustrating

the diversity of UEG traces. Blue, transparent curve: un�ltered UEG with

simulation artefacts. Orange curve: �ltered, artefact-free UEG. Green vertical line:

depolarisation. Red vertical line: repolarisation. Blue dashed vertical lines: repolar-

isation wave detection window. Red crosses: repolarisation wave peaks. Each row

represents 5 random UEGs taken from (top to bottom): patient 1, sinus rhythm;

patient 4, coronary sinus paced; patient 3, RV pacing; patient 2, ventricular tachy-

cardia (CL=384 ms); patient 4, VT (CL=534 ms). The
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Figure 3.6: Median ARI per global cycle length of maps. The point colours

encode the patient identi�er, while their symbols encode the type of rhythm.
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error
fit
data

Figure 3.7: Fitting a curve on a point cloud when both the �independent�

and dependant variables have an equal error.

First, we �tted eq. 3.1 to the point cloud corresponding to each level of LV wall

CT thinning using a least squares regression approach.

APD = a ·
(

1− b · e−CL
c

)
(3.1)

Second, as others have proposed in similar studies [Pop et al. 2012], we also

tried �tting a linear function, also by a least squares approach, to the relationship

between the inverse of the cycle length and the inverse of the APD.

Since the APD restitution curve is classically established between the previous

diastolic interval (DI) and not the cycle length itself, we could numerically switch

to APD as a function of DI using the two regressions described above, and the fact

that APD = DI + CL. This is presented on the right part of �g. 3.8, and also in

transparency on the bottom row.

Finally, and partly because our �nal goal was to use this data to parameterise

a reaction-di�usion model, we tried �tting the restitution curve analytical formula

(eq. 3.2) of the Mitchell-Schae�er model [Mitchell and Schae�er 2003] directly, as

other similar studies had done previously [Relan 2013].

APD = τ closeln


1− (1− hmin)e

−DI
τopen

hmin


 (3.2)

In this case, the relation has to be established as a function of DI directly.

Because of the nature of our data, as others have already noted [Relan, Chinchap-

atnam, et al. 2011], a least squares approach is not suited for this task, because the

measurement errors concerns both the independent and the dependent variables.

This can be clearly visualised on the bottom row of �g. 3.8, where residuals do not

appear parallel to the Y axis.

However, an orthogonal least squares or similar approaches are not relevant here

either, because the measurements errors are distributed along straight lines with the

same negative slope. With this in mind, we designed a custom objective function,
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de�ned as the distance between data points and the curve to �t along a straight line

of slope -45° (see �g. 3.7 for an illustration).

This objective function could be minimised using the covariance matrix

adaptation-evolution strategy [Hansen, Akimoto, and Baudis 2019].

In eq. 3.2, both hmin and τopen have an impact on the slope of the restitution

curve. Since τopen also has an in�uence of the di�erence between absolute and

e�ective refractory periods and we did not have access to such information, we

decided to �x it at the value of 250 ms. We then used relatively loose bounds for

both hmin (0.1 to 0.5) and τclose (100 to 1000) and let the optimisation process

converge.

3.3.2.2 Results

Di�erent regression strategies yield di�erent restitution curves but a few tendencies

are conserved across the di�erent formulations (�g. 3.8). On one hand, APDs appear

similar or slightly shorter in moderate thinning (3-5 mm) areas to those found in

healthy tissue, roughly the equivalent of the grey zone of MRI-based patient speci�c

simulations. On the other hand, APDs are longer in thinner areas (below 3 mm),

and an inverse relationship exists between the severity of thinning and the APD.

3.4 Discussion

To our knowledge, based on the number of UEGs analysed, the results presented

in this chapter represent the largest study of this type using in vivo human data.

This is also the �rst time restitution properties are correlated to myocardial wall

thickness. The APD values should make a good basis for APD in the human left

ventricle that could prove useful for modelling personalisation. It is hard to take a

stand on whether the shortening in moderate thinning areas is signi�cant, since this

phenomenon is usually observed during acute infarction [Shaw and Rudy 1997].

3.4.1 APD estimation

There are however limitations in our ARI detection process.

Since there is no consensus on best approach for this type of task, we had to

build our own detection algorithms. Improvements are most de�nitely possible in

this regard, especially for the very challenging repolarisation wave in rapid rhythms.

A possible option might be to use machine learning methods that have been shown

to be e�cient to segment 12 lead ECGs [Jimenez-Perez, Alcaine, and Camara 2019].

This would however require manually annotating a consequent number of UEGs to

constitute training, testing and validation datasets.

Besides algorithmic issues, a number of factors are also known to in�uence APD,

and were not taken into account here. First, since our data has been collected on pa-

tients undergoing RFA of ischaemic VT, most were probably using medications that
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Figure 3.8: APD restitution curves by CT LV wall thickness. Given the

number of points, point clouds are represented as heatmaps. Colour encoding is

saturated as half the maximum number of points in a cell for readability. Each col-

umn corresponds to a CT LV wall thickness, and the last column is the superposition

of all curves of the row, with the DI on the X axis. The �rst row is an exponential

�t (eq. 3.1) of ARI by CL, the second row is a linear �t of 1/ARI by 1/CL. The last

row shows a �t of ARI by DI, and superimpose the �t of the 2 previous rows with

some transparency for comparison. σest is the standard error of the estimator. More

details in section 3.3.2. For readability, our usual colour mapping of thicknesses has

been changed here from white to grey for the healthy myocardium (5+ mm).
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alter APD as part of their daily cardiac therapeutic. It may prove valuable to con-

front patient medication to their APDs. That said, including this relationship would

probably require a higher number of patients taking various medications. Moreover,

since our end goal here is to personalise models for a comparable population, this

might not be crucial.

Finally, APDs are shorter in the epicardial than in the endocardial cells, although

Anyukhovsky Evgeny P., Sosunov Eugene A., and Rosen Michael R. [1996] could not

�nd this di�erence in an in vivo canine study. In spite of this, we decided to analyse

endocardial and epicardial recordings together, because (a) we only had epicardial

maps for one patient, making it impossible to average interpersonal variations in

APDs for the epicardial layer and (b) excluding the patient was an option, but would

have considerably diminished the number of UEGs analysed, since the epicardial

maps included a lot of points (see patient #3 on table 3.1). We plan on interacting

with our clinical collaborators to gather more recordings, and wish to investigate

whether endo/epicardial di�erences in APD could be shown with our UEG analysis

methodology.

Nonetheless, given the large number of maps, patients and UEGs analysed, we

believe that the APD information we extracted from the EP maps remains valuable.

3.4.2 APD by wall thickness

As others have argued [Orini et al. 2015; Franz 2003], there is no perfect, unequiv-

ocal mathematical formulation to build APD - RC curves from experimental data.

This is why we chose to present three di�erent �tting strategies, guided both by

what is found in the literature and our goal to use this data to create the model

personalisation framework detailed in the next chapter.

An issue we faced while �tting these curves was that we do not have access to

the real DI but we rather deduce it from the CL, assuming that both the duration

of the previous AP and the duration of the previous CL are equal to those of the

considered AP. In a few cases, e.g., rapid maps, where 3 depolarisations are visible,

accessing the real DI is possible but we chose to stick to a coherent formulation

of the DI-APD relationship across all maps and did use the real DI there either.

Ideally, we would like to run our analysis again on UEGs recordings covering a

much longer window, allowing to assess APD and the �real� previous DI for all cases

and removing the need for the custom �tting strategy described in section 3.3.2.1

and visible on the last row of �g. 3.8.

The last problem we need to mention in this section concerns registration un-

certainties between EP and CT data. Notwithstanding these limitations, given the

number of UEGs studies, and coherent results with di�erent regression strategies, we

believe our conclusions concerning APDs in moderate thinning areas versus APDs

in dense scars are valid.

Our �ndings concerning longer APDs in dense scar areas is di�erent from the

porcine study by Pop et al. [2012] using MR and optical �uorescence imaging to

assess APDs. However, (a) it is possible that there are di�erences between human
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and porcine myocardiums and (b) the porcine study was conducted shortly (weeks)

after the acute infarct episode when our study focus on chronic (several years)

infarcts. Longer APDs in scar are compatible with the main idea behind clinical

VT induction protocols (illustrated in �g. 4.8) and our simulations of these protocols,

as we will show in the next chapter.
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After having gathered information on the repolarisation properties of cardiac

tissue, and more importantly on the di�erences between healthy and scarred my-

ocardium, our next task was to use it to parameterise a reaction-di�usion model.

This chapter will present the cell-level model we chose (section 4.1), the numer-

ical scheme best suited to our personalisation data (section 4.2) and the results of

our �virtual EP lab� experiments (section 4.3).

Our main contributions in this chapter are:

� an ionic model personalisation framework based on CT imaging (section 4.1.2),

� an e�cient implementation of the Lattice Boltzmann Method for cardiac EP

leveraging the computational power of graphical processing units without

needing to resort to low-level programming languages (section 4.2.4),

� an in silico version of arrhythmia induction protocols that interventional car-

diologists use during radio-frequency ablations (section 4.3).
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Figure 4.1: Impact of the di�erent parameters of the Mitchell-Schae�er

[Mitchell and Schae�er 2003] model of cardiac action potential. Stimula-

tions that are strong enough to raise v above vgate are e�cient and annotated in

green; an ine�cient one is annotated in red. The last stimulation is equivalent in

intensity to the ine�cient one, but since h had more time to �recover�, Jin (eq. 4.3)

is �stronger� and a proper depolarisation can happen. In the framework presented

in this chapter, stimulations will either be explicitly applied to mimic a pacing elec-

trode or come from the di�usion of neighbour voxels. Note how a shorter diastolic

interval (DI) yields a shorter action potential duration (APD).

4.1 Ionic model

4.1.1 Presentation

The Mitchell-Schae�er model of cardiac action potential (AP) [Mitchell and Scha-

e�er 2003] has been used in previous studies [Relan, Chinchapatnam, et al. 2011] to

model re-entrant ventricular tachycardia (VT). It belongs to the category of simpli-

�ed ionic models of AP (section 1.2.1), regrouping �uxes of di�erent ionic species

together, depending on their e�ect on the transmembrane potential. Instead of rep-

resenting the cell membrane permeability to the di�erent ions involved, its limited

parameters are related to the general shape of the cardiac AP. This makes it a

convenient candidate for our use-case, since (a) the computations involved to ob-

tain solutions are not demanding (b) it does not seem reasonable to expect model

personalisation at the ion channel level in the foreseeable future.

In order to explore the impact of its di�erent parameters and help us determine

which ones were relevant we developed an interactive tool that can be used in a web

browser.1

In this model, two state variables are used:

1. v represents the scaled transmembrane potential,

2. h acts as a gating variable: it controls the recovery of the virtual cardiac cell,

by modulating its excitability and general response to an external current.

The variation of v over time is given by the following ordinary di�erential equa-

1https://nicoco.fr/files/jsms/

https://nicoco.fr/files/jsms/
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tion:

dv

dt
= Jin(v, h) + Jout(v) + Jstim (4.1)

Jout represents the ionic movements that tend to repolarise the cardiomyocyte

membrane.

Jout(v) = − v

τout
(4.2)

It is governed by the parameter τout that will impact mostly the slope of the

phase 3 of the AP.

Jin represents the ionic movements that tend to depolarise the membrane. We

used a modi�ed version of Jin that introduces the λ excitability parameter [Djabella,

Landau, and Sorine 2007].

Jin(v, h) =
h(v(v − λ)(1− v))

τin
(4.3)

It is governed by τin, which will impact the slope of the depolarisation (phase

0). It is also under the dependence of the gating variable h to mimic the threshold

behaviour of excitable cells:

dh

dt
=

{
1−v
τopen

if v < vgate
v

τclose
if v > vgate

(4.4)

Given proper parameterisation, this model can exhibit a plateau behaviour

(phase 2) and also APD restitution properties similar to what is observed in vivo,

see �g. 4.1 for an example.

Because this framework does not model the autonomic behaviour of cardiac cells

and despite the name of the article initially describing this model (a two-current

model. . . ), a third current actually has to be involved for the model's v variable to

exhibit an AP-like behaviour: Jstim. This last term represents the external stimu-

lation current that has to be applied in order to initiate the depolarisation (phase

0) by bringing v above vgate. On our case, Jstim will be the pacing stimulation we

apply on a speci�c location to mimic the stimulation catheter of the interventional

cardiologist. In the other locations that we do not stimulate directly, v might be

raised above vgate by the in�uence of the propagation (di�usion) of the depolarisa-

tion wave from the neighbouring cells, something possible in vivo through speci�c

structures, e.g., gap junctions.

4.1.2 Parameterisation

Our global strategy to parameterise the ionic model is to exploit the conclusions of

chapter 3.
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Figure 4.2: Parameterisation of the ionic model by CT thickness (top) and

the corresponding numerically obtained APD restitution curves (bot-

tom). τopen is set to 120, as motivated in section 4.1.2.2.
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4.1.2.1 The τin time constant and the excitability parameter

As explained in section 4.1, the τin parameter controls the velocity of the inward

current that tends to depolarise and thus participate in the steepness of the phase 0

slope of the AP. As animal studies [Dun et al. 2004], reviews [Decker and Rudy 2010],

and modelling studies [Rocío Cabrera-Lozoya et al. 2016] have shown that infarcted

zones present a relatively �atter phase 0 when compared to healthy myocardium, it

made sense to increase this parameter in the infarcted zone. We made the hypothesis

that the steepness of phase 0 follows an inverse relationship with the CT thickness,

and interpolated values evenly spaced on a logaritmic scale ranging from 3 in the

thinnest areas to 0.3, the value used in the original paper [Mitchell and Schae�er

2003] in the healthy areas (5 mm and above).

Scar areas are expected to be less easily excitable because of the �brotic tissue.

We thus set the lambda parameter from values ranging from 0.3 in the most dense

scar areas to 0.01 in the healthy tissue, evenly spaced on a logaritmic scale as shown

on �g. 4.2.

Both τin and λ in�uence the minimal Jstim value (or similarly the di�usion-

related incoming v) needed to initiate an AP (see �g. 4.1), thus increasing them

participates in the source-sink mismatch e�ect. Since this e�ect has been shown

to be relevant [Ciaccio et al. 2018] in re-entrant VT, this is another argument for

higher values in infarcted areas.

By a similar mechanism, higher τin and λ values reduce the apparent propagation

speed of the depolarisation wave. As we have shown in chapter 2, slower propagation

speeds in scarred areas, in relation with the severity of the thinning are a key element

to reproduce intra-cardiac recordings (activation maps) of re-entrant VT (�g. 2.5)

and controlled pacing (�g. 2.11). This is another motivation for the values we chose.

The apex and base of the left ventricle are physiologically thinner than the rest

of the myocardium. To account for this, λ was lowered in these zones using the local

LV coordinates system described in section 2.2.2.7 as follows. A centrality C value

was computed for each point of the left ventricle using C = 2(0.5− (φ− 1.5)2) and

λ was multiplied by 1 + C; λ was then clipped so that no values were below 0 or

above 0.5.

4.1.2.2 Other time constants (τopen, τclose and τout)

By acting on the rate of recovery of the gating variable h (see �g. 4.1), the τopen
parameter has a major in�uence on the dissociation between absolute and e�ective

refractory periods of virtual cardiomyocytes. While heterogeneity in these di�er-

ences may be interesting to simulate arrhythmias, we did not have any argument

(or data) to adjust it based on the CT thickness, so we decided to use the same value

for τopen across the whole domain, as was already mentioned in section 3.3.2.1. Since

τopen also has an in�uence on APD restitution curves (RC) (eq. 3.2), we settled on

the value 120 that was compatible with RCs constructed in �g. 3.8.

The τout parameter was set to be 10 times bigger than the τin parameter, in

order to maintain the τin/τout constant and limit di�erences in the steepnesses of
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the RCs.

Using the following relationship [Mitchell and Schae�er 2003]:

APDmax =
τclose

log( τout4τin
)

(4.5)

we chose τclose such that APDmax values were compatible with the �ndings of

chapter 3.

However, since eq. 3.2 only describes the approximate RC of the Mitchell-

Schae�er model, since eq. 4.5 does not take into account the in�uence of λ and

since single cell computations of this model are very fast to compute using a for-

ward Euler scheme, we decided to use the results shown in �g. 3.8 to match the

actual observed APD when numerically solving eq. 4.1 and eq. 4.4. To do so, we

constructed �numerical restitution curves� by applying Jstim with di�erent intervals

and numerically observing the time during which v was above 0.01. Because eq. 4.5

is less and less valid as λ increases, the �pseudo-APDmax� values retained were 850,

350, 300, 250 and 200 from 0 to 5 mm of thickness.

For the thicknesses that lie in between the bounds we chose in chapter 3, we

linearly interpolated the parameters, and veri�ed that this did not induce unwanted

�jumps� in the morphology of RCs for intermediate values. The numerical RCs for

these intermediary thicknesses are shown on �g. 4.2.

4.2 The lattice Boltzmann method

The Lattice Boltzmann Method (LBM) was initially proposed as a numerical scheme

to simulate the behaviour of �uids using the Navier-Stokes equations. However, it

can also be used for reaction-di�usion simulations as an alternative to the widely

used �nite elements method. It has been shown to be e�cient for cardiac electrical

behaviour, using the Mitchell-Schae�er model [Rapaka et al. 2012] or the Luo-Rudy

[Luo C H and Rudy Y 1991] model [Campos et al. 2016].

4.2.1 Formulation

In the LBM framework, the spatial domain is discretised as a regular grid, which

makes it particularly suited to deal with segmentations of imaging data which are

by nature available in this very format. In order to use the LBM, one has to decide

a neighbouring scheme that will determine the number m of directions in which the

di�used species will be able to �ow. In our case, and as other have done before

[Rapaka et al. 2012; Campos et al. 2016], we chose to let the di�used species �ow in

6 directions around each element of the grid, that we will refer to as voxels from now

on. These 6 directions are the 6 faces of the cuboid a voxel represents. In the LBM

framework, this type of direction discretisation is referred to as D3Q7, 3 standing

for the 3 dimensions of our domain, and 7 for the number of directions we let v �ow

to, because a last �direction� is added to the 6 other ones in order to represent the

quantity that stays in place.



4.2. The lattice Boltzmann method 75

dv
dt

∗
= J(v)

dv
dt

∗
= J(v)

dv
dt

∗
= J(v)

dv
dt

∗
= J(v)

dv
dt

∗
= J(v)

dv
dt

∗
= J(v)

dv
dt

∗
= J(v)

dv
dt

∗
= J(v)

dv
dt

∗
= J(v)




. . .

. . .

. . .

. . .

. . .







. . .

. . .

. . .

. . .

. . .







. . .

. . .

. . .

. . .

. . .







. . .

. . .

. . .

. . .

. . .







. . .

. . .

. . .

. . .

. . .







. . .

. . .

. . .

. . .

. . .







. . .

. . .

. . .

. . .

. . .







. . .

. . .

. . .

. . .

. . .







. . .

. . .

. . .

. . .

. . .







. . .

. . .

. . .

. . .

. . .




e1
e2

e3

e4

e5

ω1

ω2

ω3

ω4

ω5

v =
5∑
1
fi

v =
5∑
1
fi

v =
5∑
1
fi

v =
5∑
1
fi

v =
5∑
1
fi

v =
5∑
1
fi

v =
5∑
1
fi

v =
5∑
1
fi

v =
5∑
1
fi

0 1 0 1

v(t) f ∗i (x) = f (ωi, v,
dv∗
dt ) fi(x) = f ∗i (x + ∆ei) v(t + ∆t)

Collision Streaming

Figure 4.3: Updating state variables after a time step with the lattice

Bolztmann method. Independently for each grid element, given h (not repre-

sented) and v (encoded in blue), dv∗

dt (eq. 4.1) and f∗i (eq. 4.7) are computed in

parallel (left half, collision step). During the streaming step (middle), fi by built

combining elements of f∗i of neighbours accordingly, and is only represented for the

central element of the grid here, to avoid cluttering the illustration. v can �nally

be recovered (right) as the sum of the elements of fi for each grid cell. To imple-

ment boundary conditions (not represented here) at the domain edges, �streams� are

not allowed to leave the domain and the corresponding fi actually contains several

�stay in place� rows. For didactic reasons, we here illustrated the lattice Boltzmann

method in 2 dimensions, with a 5 neighbours (e) scheme (D2Q5) while D3Q7 was

actually used in our work.

Each voxel x is associated with a particle distribution function fi, a vector of m

(7 in our case) elements that describe the quantity v �owing to each neighbour:

fi(x+ ei∆xi, t+ ∆t)− fi(x, t) = Ω(x, t) (4.6)

where t is the time; ∆x is the spacing of the grid in the direction ei; ∆t is the

time step used for the numerical solving; ei are the directions of the neighbours (one

of theses neighbours being the voxel x itself); Ω is the collision operator.

The left-hand side of eq. 4.6 represents the di�usion of the quantity v (stream-

ing step in the LBM jargon) while the right-hand side describe the reaction part

(collision step), in our case it corresponds to the chosen ionic model.

The collision step is purely local and can be independently computed for each

voxel. In our case, it results in an intermediary value we call dvdt
∗
that we compute

using a forward Euler scheme following eq. 4.1. Updating the gating variable h is

also done for each voxel independently and can be seen as a part of the collision

step.

Then comes the streaming step where we compute which quantity of v will stay

in place and which quantity will di�use in each direction. It can be computed by

using an intermediate, post-collision state of fi, noted f
∗
i , a vector of m elements

for each voxel x. Each element of f∗i represent a direction ei around the voxel,

including the �stay in place direction�. fi∗ is governed by the multiple-relaxation
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times approximation [d'Humières 2002] operator:

f∗i (x, t+ ∆t) = fi(x, t)−A(fi− ωiv(x, t)) + ωidv
∗ (4.7)

where the matrix A relaxes fi towards the local value of v and ωi are coe�cient

speci�c to the DnQm direction discretisation. fi(x, t) can then be updated by using

the elements of f∗i that corresponds to the �ows towards the voxel x. The quantity

v(x, t) can �nally be recovered by the summing the values of the vectors fi(x, t).

4.2.2 Anisotropy

In the isotropic di�usion case, A = I/τ where I is the m × m identity matrix

and τ the characteristic relaxation time related to the conductivity of the domain,

making it equivalent to the simpler BGK approximation [Bhatnagar, Gross, and

Krook 1954].

For the anisotropic case A must be replaced by −M−1SM where M projects the

vector onto the moment space. From this point we will focus only on the D3Q7 case,

were ω0 = 1
4 (stay in place) and ω1−6 = 1

8 (neighbours). As was done in similar

studies [Rapaka et al. 2012; Campos et al. 2016], we consider the �rst moment as

the conserved quantity (v). The second to fourth moments are related to the �ux of

v in directions i and the remaining moments are obtained using the Gram-Schmidt's

procedure.

M =

1 1 1 1 1 1 1

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

6 −1 −1 −1 −1 −1 −1

0 2 2 −1 −1 −1 −1

0 0 0 1 1 −1 −1

S−1 =

τ0 0 0 0 0 0 0

0 ¯τxx ¯τxy ¯τxz 0 0 0

0 ¯τyx ¯τyy ¯τyz 0 0 0

0 ¯τzx ¯τzy ¯τzz 0 0 0

0 0 0 0 τ4 0 0

0 0 0 0 0 τ5 0

0 0 0 0 0 0 τ6

τ0 is related to v; τ4, τ5, τ6 a�ects solely the stability of the procedure and were

set to 1.33 in our case. Given the anisotropic conductivity tensor components σij ,

the other relaxation-time coe�cients are given by:

τ̄ij =
1

2
δij + 4

∆t

∆xi∆xj
σij (4.8)

where ∆xi and ∆xj are the grid spacing in the i and j direction; δij is the Dirac

delta function.
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4.2.3 Boundary conditions

Voxels that represent the epicardial and endocardial layers of the domain have no

neighbour on at least one of their side. Implementing a no-�ux condition on these

border voxels is convenient within the LBM framework using the bounce-back rule.

This rule consists in imposing an incoming distribution fi that is equal to the out-

going distribution in the �no neighbour� direction. A simpler way to phrase this is

that these voxels will have other �stay in place� distributions corresponding to the

expected outgoing �ow in their fi vectors.

4.2.4 Implementation

We decided to implement a numerical solver using the LBM taking advantage of the

computational power of modern Graphic Processing Units (GPU). Since the collision

step is purely local (section 4.2.1) and the streaming step can be expressed using

only basic operations such as additions, multiplications and matrix multiplications,

GPUs are especially suited and e�cient for this type of task.

We used the PyTorch library [Paszke et al. 2019], a high-level python interface

for GPU-related operations. While it is mainly developed with deep learning tasks

in mind, it provides tensor objects with an interface meant to be very similar to the

interface of numpy arrays. Using this type of library alleviates the time required

for the development and eases the maintenance of the code but also provides less

algorithmic �exibility than using low-level interfaces that are closer to the hardware.

In our case speci�cally, reaching a reasonable computational time implied to not

loop �explicitly�, i.e., at the python level, on each voxel but rather use dedicated

PyTorch functions where loops are executed in a lower level language, compiled with

numerous optimisations.

With cardiac wall segmentations, the 3-dimensional array representing the do-

main contains a lot of voxels that are out of the domain. Knowing this, we rep-

resented the domain as one dimensional arrays of length N (N being the number

of voxels that are actually part of the domain), one for v, one for h. The main

problem that arises with this strategy is that this �at representation does not con-

tain the neighbouring information, which will be required for the streaming step

of the LBM. This is why our implementation creates a neighbourhood N × 6 2D

array, representing the �attened indices of the neighbours in each direction of the

D3Q7 space and direction discretisation model. When one or several neighbours

are outside the domain (this corresponds to the Neumann boundary conditions de-

scribed in section 4.2.3), we stored the �atten index of the the voxel itself in the

corresponding column (C-style, row-major arrays) to easily apply the bounce-back

rule. The neighbourhood array only needs to be created once per heart geometry,

and is anyway very fast to obtain.

The matrices A (section 4.2.2) were computed once per simulation and stored as

a 3D array of shape N × 7× 7. The variables fi, fi_star, dv_star (section 4.2.1)

were stored as 2D arrays of shape N × 7, in relation to the grid model used.
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After initialising all elements of fi and v to zeros and those of h to 1, at each

iteration of time step ∆t (outer loop), the following operations were executed:

1. Set all columns of dv_star to the same value: dv computed with a forward

Euler scheme with eq. 4.1. This is also where we can apply Jstim when needed.

2. Update fi_star using eq. 4.7. Since matrix A is of the right shape and since

v and ωi can be e�ciently broadcast by PyTorch, this does not require any

explicit inner loop at the python-level.

3. Update h, also with a forward Euler scheme.

4. Fill the �rst column of fi with the �rst row column of fi_star. This repre-

sents the quantity of v that stays in place.

5. Iterate through the rows of the neighbourhood array to update the other rows

of fi by �lling them with the values of the corresponding neighbours, taking

advantage of the fast indexing methods o�ered by PyTorch. This is the only

inner loop at the python-level and only increases the running time linearly in

regards to the neighbouring scheme chosen (6 in our case) and to the size of

the domain N .

6. Update v as the sum of columns of fi.

On a regular grid with a 0.8 millimetres spacing between voxels (N ≈ 800, 000),

a simulation of 10 seconds of cardiac electrical activity takes about 10 minutes on a

nVidia GTX 1080 Ti GPU, using a time step of 0.5 ms.

4.2.5 Conductivity

As explained in section 4.1.2.1, in our simulation framework, the conductivity pa-

rameter σ is not the only parameter that in�uences the apparent speed of the de-

polarisation wave. Besides τin, this speed will also be in�uenced by the di�usion

of neighbouring voxels, which depends notably on the domain topology. Moreover,

because the LBM framework, just like other numerical schemes, is an approxima-

tion of the mono-domain model of cardiac electrical activity, a null conductivity is

not possible because of the phenomenon known as numerical di�usion. In the LBM

framework, speci�cally, a smaller time step ∆t increases the strength of numerical

di�usion. This is one of the reasons which lead us to choose a time step of 0.5

ms to compute our simulations, since relatively slow speeds are necessary to model

re-entrant waves.

In order to calibrate σ to reach target speeds that we de�ned in chapter 2,

we realised numerical experiments on a 8 × 8 × 0.8 cm virtual cardiac tissue slab,

discretised as a regular grid of 0.8 mm of spacing and using a time step of 0.5

ms. In the top left area of 4 × 4 × 0.8 mm, v was manually set to 1 to initiate a

propagation. The speed of this depolarisation wave was measured as the quotient
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Figure 4.4: Apparent wave front propagation speed on a tissue slab. [Left]

Schematic of the experiment for one thickness level. [Right] Speeds observed with

a conductivity ranging from 0.75 mm2 · s−1 to 3 mm2 · s−1 in the �bre direction

and divided by 2.52 in the transverse direction, using the ionic parameters shown

in �g. 4.2. Below 4 mm of thickness, no anisotropy of di�usion is actually used

because the Streeter model of �bre orientation does not make much sense with such

thin areas.

of the depolarisation time in the bottom left corner minus the depolarisation time

outside the area where v was forced to one by the distance between those 2 points.

This tissue slab was also parameterised to incorporate a �vertical�, top to bottom,

�bre direction, so that the speed in the transverse direction could be measured in

the top right corner in a similar way.

We empirically established that σ values ranging from 0.75 mm2 ·s−1 to 3 mm2 ·
s−1 in the �bre direction and divided by 2.52 in the transverse direction yielded

apparent propagation speeds compatible with what we used in chapter 2.

The results of these experiments are shown on �g. 4.4. However, it must be noted

that our tissue slab experiments do not precisely re�ects the actual propagation

speeds observed with real heart geometries, because their topology will also have

an in�uence on the apparent propagation speed. In particular, thin corridors will

be responsible for lower speeds at small thicknesses, as explained at the beginning

of this section. That said, these slab experiments were useful to setup a reasonable

value for σ.

In our real heart geometries, the Streeter model of cardiac �bre orientation

[Streeter Jr et al. 1969] was used to generate a set of synthetic �bres. To establish

local coordinates and generate these synthetic �bres on voxel data, the solution of

the heat equation, also used to compute the wall thickness (section 2.1.2.4), was

used as a �wall depth� attribute to each voxel, from 0 in the endocardial layer to 1

in the epicardial layer. The orientation of the major semi-axe of the ellipsoid �tted

on the left ventricle (�g. 2.9) was also used to establish the base to apex direction

needed for the Streeter model. We could then used an orientation ranging from -80°

(endocardium) to 80° (epicardium). An example of this �bre orientation on a real

heart geometry can be seen on �g. 4.5.
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Figure 4.5: Fibre orientation with the Streeter model [Streeter Jr et al.

1969]. This was obtained for patient #1, with a -80° epicardial angle and 80° in

the endocardium relatively to the longitudinal direction.

4.2.6 Clustering of simulated VTs

With a high number of inducible pacing sites, it occured frequently that the same

re-entrant pattern was induced by di�erent pacing sites. We thus designed an au-

tomated, hierarchical clustering strategy to group similar simulations together. In-

stead of directly de�ning a distance metric at the voxel level, we decided to use a

secondary output of simulations: simulated 12-lead electrocardiograms (ECG) using

the dipole formulation [Gi�ard-Roisin, Fovargue, et al. 2016].

The �rst step to de�ne our metric was to automatically determine the cycle

length (CL) of a simulation output. To this end, we used the following algorithm:

Inputs:

� ecg: 2D array of shape n leadsÖm samples

� minCL, maxCL: minimum and maximum possible cycle length

Output: cycle length (periodicity of the signal)

Procedure:

corrs ← empty associative array

for CL from minCL to maxCL do

s1 ← ecg[0:end, end-CL:end]

s2 ← ecg[0:end, end-2CL:end-CL]

norm ←
√∑m

0 s2
1i
×∑m

0 s2
2i

corrs[CL] ←
∑CL

0 s1i×s2i
norm
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end for

return argmax(corrs)

Once the cycle length of a simulated ECG has been determined, we designed a

�circular correlation coe�cient� and used it to build a a distance matrix between

each of our simulated arrhythmia. In the following algorithm, the pad function

consits in adding zeros on the right end of an array to allow element-wise operations

between 2 arrays of di�erent sizes, and the roll operation consists in shifting elements

in the array.

Inputs:

� s1: 2D array of shape n leadsÖm1 samples

� s2: 2D array of shape n leadsÖm2 samples, with m2 ≤ m1

Output: circular correlation coe�cient

Procedure:

for CL from minCL to maxCL do

maxcorr ← 0

padded ← pad(s2, m1 −m2)

norm ←
√∑m1

0 s2
1i
×∑m1

0 padded2
i

for shift from 0 to m1

rolled ← roll(s1, shift)

corr ←
∑m1

0 s1i×rolledi
norm

if corr > maxcorr then

maxcorr ← corr

end if

end for

end for

return maxcorr

Once this distance matrix was computed, we could cluster the results using

a standard hierchical clustering algorithm provided by the SciPy toolbox, using

1 − |corr| as the distance metric, and setting a threshold of 0.05 to separate the

clusters.

4.3 Experiments

4.3.1 Stimulation protocol

To run simulations in our framework, there is one last crucial choice to make: how

to �excite�, i.e., initiate the depolarisation wave in our virtual heart? As mentioned

in section 4.1, the Mitchell-Schae�er model does not reproduce any of the autonomic

activity of cardiac cells. Moreover we are mostly interested in stimulation and VT

induction. This is why we applied a an external stimulation (pacing), to initiate
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Figure 4.6: Clustering simulations outputs. Left part: superimposition of dif-

ferent simulated ECGs that have a circular cross-correlation above 0.95, forming

a single cluster. Right part: distance matrix between all simulated ECGs for a

patient, with the corresponding dendrogram.

the propagation of a depolarisation wave throughout the virtual heart. Two main

elements have to be considered in this regard:

1. the pacing protocol per se, i.e., the di�erent timings at which the external

stimulation will be applied,

2. the pacing location, i.e., where do we place our �virtual electrode�?

Setting aside the sinusal recordings that are out of scope for our simulation

framework, since we did not include any of the complex pathways activated during

sinus rhythms (�g. 1.1), in the clinical EP lab, interventional cardiologists typically

record activation maps using 2 families of pacing protocols.

In controlled pacing protocols, the physicians look for abnormal electrograms

or abnormally late depolarisation sites to locate zones potentially responsible for

arrhythmia. This type of slow pacing, with a stimulation period of usually 600 ms

are not expected to induce self-sustained arrhythmias.

In induction protocols, the physicians goal is to induce a self sustained arrhyth-

mia in order to locate (and ablate) the re-entrant channel. These protocols start

with an initial controlled pacing phase (called S1 ) of a few stimulations, after which

an earlier S2 stimulation is applied. The �rst phase is repeated and the S2 timing

is reduced at each iteration, until either inducing the arrhythmia or reaching the

refractory period. When this S1S2 protocol does not induce any arrhythmia, and

if the physician judges that the patient is not too much at risk, this protocol is

repeated with a faster S1 phase and/or the physician switches to an S1S2S3 proto-

col. In a S1S2S3 protocol, the S1 phase is still a controlled, steady pacing, the S2
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stimulus is chosen to be just above (generally 20 ms) the refractory period found

with the S1S2 procedure, and a third, S3 stimulus is applied in the same way the

S2 was applied: by decreasing the S3 interval until either inducing an arrhythmia

or hitting the refractory period again.

Concerning the pacing sites, for practical reasons these protocols are usually

applied in the endocardial layer of the right ventricular apex. They can also be

applied from di�erent sites, at the discretion of the operator, depending on practical

settings and its preferences and habits.

In our case, since neither patient safety nor pacing sites accessibility were in

play, we chose 101 pacing sites for each patient and conducted complete induction

protocols in all of them. The �rst site was the left ventricular apex, de�ned by the

point where φ was minimal (cf section 2.2.2.7). Then we divided the LV in 100

squares for values of 0.1 < φ < 2.5 and 0 < θ < π
2 . In all of these squares, to

maximise the chance for a pacing site to be usable, we picked the point where the

thickness was the highest.

At each pacing site, we �rst started with 6 stimulations spaced out by 600 ms

(S1), to allow the virtual heart to enter a steady state. This is necessary because

we started our simulations with the gating variable h set to 1 and this would repre-

sent a state reached after a theoretically in�nite DI. We then conducted S1S2 and

S1S2S3 protocols, then restarted the whole procedure using S1=400 ms. At any

time during this protocol, if any electrical activity was detected 10 seconds after the

last stimulation was applied, the site was marked "inducible" and we recorded the

simulated arrhythmia and moved on to the next pacing site.

The pacing stimulations were applied by adding a stimulation current of 2 �nor-

malised potential derivative� to the dv/dt for 10 ms, i.e., 20 time steps, on a zone

of minimum 50 voxels around the pacing point.

4.3.2 Arti�cial isthmus

In the video �A re-entrant wave induced by the S1S2 protocol on an arti�cial VT

isthmus geometry�, the time counter in the top left corner turns red during stimu-

lations. It is available at https://nicoco.fr/phd/fig/lbm/ghost-reentry.mp4

To verify that the chosen parameters could indeed induce VT with inducing

protocols, we designed a fake LV with a typical VT CT isthmus similar to what is

seen on �g. 2.7 and described in the literature [Ghannam Michael et al. 2018]. This

arti�cial isthmus was created using the MUSIC software2, by coarsely segmenting

a real LV epicardium, and designing the endocardium as wanted, using the paint

segmentation toolbox, and particularly the repulsor tool that proved very convenient

for this task. The resulting arti�cial isthmus can be seen on �g. 4.8.

In this fake heart, it was quite easy to induce a re-entrant wave as illustrated

in �g. 4.8 and the associated video. The re-entry induced by the S1S2 protocol

can be explained by the fact that the longer refractory period in the scar tissue,

consequence of the longer APD, causes the early S2 (or S3) stimulations to not

2https://team.inria.fr/epione/en/software/music/

https://nicoco.fr/phd/fig/lbm/ghost-reentry.mp4
https://team.inria.fr/epione/en/software/music/
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Figure 4.7: Automated selection of pacing sites. The methodology to auto-

matically pick these points is described in section 4.3.1. Here we show one side of

the heart of patient #1.
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Figure 4.8: Re-entrant wave with the S1S2 protocol. [Top] Blue: gating

variable h; orange: transmembrane potential v for the 2 points indicated by the red

arrows. [Middle] Snapshots of the 3D simulation, aligned with the curves on top

(100ms between each frame). The blue overlay represents the APD90. [Bottom]

Activation map of the arrhythmia. After a few stimulations with a period of 600

ms (only the last one is visible here), an early stimulation (S2=340 ms), hits the

refractory period in the VT channel (indicated by the green asterisk both on the

3D view and the corresponding curve above), allowing the depolarisation wave to go

around the scar and enter the channel by the other side (green bent arrows); when

the wave exits the channel, the healthy zone is out of its own refractory period,

creating a self-sustained arrhythmia.
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Table 4.1: Summary of experiments on real data. Slow pacing (S1=600 ms)

was never enough to induce a VT, from any of the 101 sites per patient. For patient

8 and 10, the VT EAM quality made it impossible to conclude on a match between

the simulation and the recording.

Patient
No induction
by slow pacing

Inducible with
dedicated protocol

Documented VT
reproduction

Simu CL
(ms)

EAM CL
(ms)

1 560 507

2 440 456

3 560 410

4 × - 560

5 320 260

6 420 370

7 580 446

8 ? - -

9 × × - -

10 ? - -

propagate within the isthmus but allows the depolarisation to go around the scar

and enter the isthmus from another point. Since the propagation is slowed down

within the isthmus, the depolarisation wave can �nally excite the voxels that were

refractory when they were �rst hit using the shortest path from the pacing site to

the isthmus.

No such re-entrant wave was observed with a steady pacing (600 ms between

stimuli) from any site in this geometry. However, from a few sites, a steady but

rapid pacing of 400 ms did induce a similar self-sustained arrhythmia.

We also experimented the same pacing protocols but without any heterogeneity

in the ionic parameters. No arrhythmia were induced with any protocol or pacing

site in this setting, con�rming that the heterogeneity in APD is responsible for the

arrhythmia here.

4.3.3 On real data

We ran our virtual pacing and induction protocols on 10 di�erent real heart ge-

ometries. These patients underwent RFA of VT, so we had activation maps of their

VTs recorded during the ablation procedure. All of them underwent injected CTs as

part of their pre-procedure routine and we could register CT and EP data using the

methodology described in section 2.2.2.7. One full protocol took between 30 seconds

and 19 minutes per pacing site (median 6 minutes, standard deviation 2 minutes) on

a consumer-grade GPU, depending on whether a self-sustained arrhythmia is easily

induced or not.

Slow pacing (S1=600 ms) did not trigger any self-sustained arrhytmia in any

of the 101 pacing sites in any patient. In 9 out of 10 patients, it was possible

to induce at least one simulated VT using a dedicated protocol. For 6 patients,
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one the simulated VTs matched either the recorded VT or its mirror pattern. In

one patient, it was not possible to induce any VT using the global parameterisation

scheme we described above. Cycle lengths of the simulated VTs, while in the correct

order of magnitude, di�er substantially than their real data counterparts. For the

following paragraphs, we strongly advise the reader to visit the associated website

at https://nicoco.fr/phd/eplab/, where 3D interactive views of the simulations

are visible within the web browser.

4.3.3.1 Patient 1

Figure 4.9: Patient 1: documented VT (CL=507 ms) vs simulated VT

(CL=560 ms). 4 of the 7 simulated VT patterns are represented here. Pattern 2

is a clear match with the EAM and pattern 1 is a mirror re�ection of the EAM.

For patient 1, 14 pacing sites resulted in a simulated VT for a total of 7 di�erent

patterns. The recorded EAM was matched in both the forward (counter-clockwise)

and backwards (clockwise) directions, with a slightly longer cycle length in the

simulations.

https://nicoco.fr/phd/eplab/


88 Chapter 4. Reaction-di�usion modelling

4.3.3.2 Patient 2

Figure 4.10: Patient 2: documented VT (CL=456 ms) vs reverse pattern

in our simulations (CL=440 ms).

For patient 2, 11 pacing sites were inducible for a total of 3 di�erent re-entrant

patterns after clustering. Only the mirror re�ection of the documented pattern, a

typical �gure of eight, was matched. In the other simulated VTs took, the depolar-

istaion wave goes through similar channels, but in a simpler rotating pattern.
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4.3.3.3 Patient 3

Figure 4.11: Patient 3. The recorded VT was matched both in the same and

reverse direction, but with a signi�cantly longer cycle length (560 vs 410 ms)

For patient 3, 22 sites were inducible for a total of 4 di�erent activation patterns.

As for patient 1, the recorded pattern was matched both in the same and reverse

direction. However, the simulated VTs have a longer CL than the recordings: 560

vs 410 ms.
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4.3.3.4 Patient 4

Figure 4.12: Patient 4.

For patient 4, 9 sites were inducible for a total of 5 di�erent activation patterns.

Only the simple patterns are represented on the �gure above. For this patient, the

recorded VT was not match by any of the simulated VTs.

4.3.3.5 Patient 5

Figure 4.13: Patient 5.

For patient 5, 6 sites were inducible for a total of 3 di�erent activation patterns.

We only represented the pattern that matched the recording on the �gure above



4.3. Experiments 91

because the other patterns are not visible from this point of view.

4.3.3.6 Patient 6

Figure 4.14: Patient 6.

For patient 6, 27 sites were inducible for a total of 2 di�erent activation patterns,

one of them clearly matching the recorded �gure of 8 pattern.

4.3.3.7 Patient 7

Figure 4.15: Patient 7.
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For patient 7, 68 sites were inducible for a total of 10 di�erent activation patterns.

It is by far the most inducible heart in our database. As for patient 1 and 3, the

recorded VT was matched both in the same and reverse direction by our simulations.

4.3.3.8 Patient 8

Figure 4.16: Patient 8.

For patient 8, 7 sites were inducible for a total of 5 di�erent activation patterns.

For this patient, it is unclear whether of one these patterns match the recordings

because of the EAM's poor resolution and registration uncertainties.
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4.3.3.9 Patient 9

Figure 4.17: Patient 9.

Patient 9 is the only patient that did not present any self-sustained arrhythmia in

our simulations.

4.3.3.10 Patient 10

Figure 4.18: Patient 10.

For patient 10, 18 sites were inducible for a total of 3 di�erent activation patterns.
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4.4 Discussion

We showed that our personalised models are able to reproduce documented re-

entrant VTs, only based on CT imaging features. Not all documented VTs could be

reproduced, but in most cases where they could not, we believe it is due to CT/EP

registration errors and/or missing/interpolated EP data by the EP lab catheter con-

sole. Expecting to reproduce all known VTs for a patient in our framework does not

seem like a reasonable goal anyway, since we do not expect to be able to incorporate

into our models all the complex modi�cations of the scarred myocardium. Nonethe-

less, there are some areas where our simulations could and should be improved by

future work.

4.4.1 Limitations

First, our virtual hearts are a little too excitable: induction protocols in real life

have lower success rates than our virtual ones. But our virtual protocols are also

far more aggressive than what is doable when patient safety is a limiting factor,

so this hyper-excitability must not be interpreted as an argument for the complete

dismissal of our satisfying results.

Secondly, our simulated VTs, even when reproducing documented activation

pattern, have a di�erent cycle length than their real-life counterparts. It seems

possible to adjust our parameterisation such that all simulated VTs are shorter,

unfortunately the CL discrepancy does not seem to obey to a simple constant or

linear relationship. On a related note, in our simulations refractory periods are often

hit around 300 ms while real cardiac tissue is generally expected to tolerate higher

paces.

4.4.2 Possible improvements

As mentioned earlier, we treated the physiological thinning of the basal area of the

left ventricle by an ad hoc modi�cation of the excitability parameter. We would like

to design a more subtle way of incorporating this natural thinning, and we probably

also need to address the natural thinning of the apex in a similar way. We believe

that the VT of patient #6, which is almost twice slower in our simulations than in

the intra-cardiac recording and uses a near apical VT isthmus, is a strong argument

to re�ne our relationship between thickness and model parameters. This should be

easily integrated using the spherical coordinate φ described in section 2.2.2.7.

Finally, the pacing sites selection strategy described in section 4.3.1 can be re-

�ned. It is possible that our simulations can induce arrhythmias more selectively

by using the channelness �lter described in section 2.2 to select pacing sites. The

precise parameters and/or adaptation of this �lter for this task, and the pacing point

choice strategy that would derive from its use still needs to be studied.
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5.1 Contributions

5.1.1 Eikonal model personalisation

� In section 2.1, we demonstrated that there was a relationship between CT

LV wall thickness and depolarisation wave front apparent propagation speed

during VT.

� We extended this relationship to controlled pacing maps in section 2.2.3.3.

� In section 2.1.3, we proposed a methodology to model electrical refractoriness

in Eikonal models: the unidirectional conduction block.

� In section 2.4.2.2, we proposed a methodology to identify apparent propagation

speeds on intra-cardiac electro-anatomical maps using Eikonal models. This

methodology is linked to an approach to identify initial depolarisation sites

(section 2.4.4) on these maps that usually do not cover all heart surfaces.

� We proposed a fast electrogram simulation model with a formulation combin-

ing the Eikonal model to an AP model in (section 2.3.3.4).

5.1.2 Mono-domain model personalisation

� In section 4.1.2, we built a mono-domain cardiac electrophysiology model per-

sonalisation framework based on CT imaging based on the results obtained in

section 3.4.2.
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� In section 4.2.4, we present an e�cient implementation of the lattice Boltz-

mann method for cardiac EP leveraging on the computational power of graph-

ical processing units without needing to resort to low-level programming lan-

guages.

� In section 4.3, we showed that our mono-domain simulations were able to

reproduce documented VTs using in silico versions of induction protocols that

interventional cardiologists use during radio-frequency ablations.

5.1.3 Signal and image processing

5.1.3.1 Cardiac imaging

� In section 2.3.2.1, we proposed a deep learning approach to segment the my-

ocardial wall on high resolution three-dimensional CT images.

� In section 2.2.2.7, we developed a �left ventricular spherical coordinates� suited

for multi-modal data integration.

� In section 2.2.2.6, we introduced a channelness �lter to identify potential VT

isthmuses on CT images.

5.1.3.2 Unipolar electrograms

� In section 3.2.3, we proposed the �adaptative plateau �nding� algorithm to

determine the start and the end of the depolarisation complex on unipolar

electrograms.

� In section 3.2.4.2, we described an algorithm to discriminate positive, negative

and biphasic depolarisation waves on unipolar electrograms.

� Using these algorithms, we established a relationship between CT wall thick-

ness and action potential duration in section 3.4.2.

5.2 Publications

The following articles are directly related to the topic of this PhD and were repro-

duced in chapter 2

� Nicolas Cedilnik, Josselin Duchateau, Rémi Dubois, Pierre Jaïs, et al. [June 11,

2017]. �VT Scan: Towards an E�cient Pipeline from Computed Tomography

Images to Ventricular Tachycardia Ablation�. In: Functional Imaging and

Modelling of the Heart. International Conference on Functional Imaging and

Modeling of the Heart. Lecture Notes in Computer Science. Springer, Cham,

pp. 271�279. isbn: 978-3-319-59447-7 978-3-319-59448-4. doi: 10.1007/978-

3-319-59448-4_26. url: https://link.springer.com/chapter/10.1007/

978-3-319-59448-4_26

https://doi.org/10.1007/978-3-319-59448-4_26
https://doi.org/10.1007/978-3-319-59448-4_26
https://link.springer.com/chapter/10.1007/978-3-319-59448-4_26
https://link.springer.com/chapter/10.1007/978-3-319-59448-4_26
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� Nicolas Cedilnik, Josselin Duchateau, Rémi Dubois, Frédéric Sacher, et al.

[Nov. 23, 2018]. �Fast Personalized Electrophysiological Models from CT Im-

ages for Ventricular Tachycardia Ablation Planning�. In: EP-Europace 20.

url: https://hal.inria.fr/hal-01875533/document

� Nicolas Cedilnik, Josselin Duchateau, Frédéric Sacher, et al. [2019]. �Fully

Automated Electrophysiological Model Personalisation Framework from CT

Imaging�. In: Functional Imaging and Modeling of the Heart. Ed. by Yves

Coudière et al. Lecture Notes in Computer Science. Cham: Springer Interna-

tional Publishing, pp. 325�333. isbn: 978-3-030-21949-9. doi: 10.1007/978-

3-030-21949-9_35

� Nicolas Cedilnik and Maxime Sermesant [2020]. �Eikonal Model Personalisa-

tion Using Invasive Data to Predict Cardiac Resynchronisation Therapy Elec-

trophysiological Response�. In: Statistical Atlases and Computational Models

of the Heart. Multi-Sequence CMR Segmentation, CRT- EPiggy and LV Full

Quanti�cation Challenges. Ed. by Mihaela Pop et al. Lecture Notes in Com-

puter Science. Cham: Springer International Publishing, pp. 364�372. isbn:

978-3-030-39074-7. doi: 10.1007/978-3-030-39074-7_38

The following articles were redacted during the time of this PhD. They illustrate

the numerous collaborations we could be part of during this PhD, but were only

mentioned in this manuscript, as they are not directly linked to model personalisa-

tion.

� Masateru Takigawa et al. [June 15, 2019]. �Are wall thickness channels de�ned

by computed tomography predictive of isthmuses of post-infarction ventricular

tachycardia?� In: Heart Rhythm. issn: 1547-5271. doi: 10.1016/j.hrthm.

2019.06.012. url: http://www.sciencedirect.com/science/article/

pii/S1547527119305570

� Ibrahim Ayed et al. [June 6, 2019]. �EP-Net: Learning Cardiac Electrophys-

iology Models for Physiology-based Constraints in Data-Driven Predictions�.

In: FIMH 2019 - 10th International Conference on Functional Imaging of the

Hearth. Springer, pp. 55�63. url: https://hal.inria.fr/hal-02106618

� Tania Bacoyannis et al. [June 6, 2019]. �Deep Learning Formulation of ECGI

for Data-driven Integration of Spatiotemporal Correlations and Imaging In-

formation�. In: FIMH 2019 - 10th International Conference on Functional

Imaging and Modeling of the Heart. Vol. LNCS 11504. Springer, pp. 20�28.

url: https://hal.inria.fr/hal-02108958

� Marta Nuñez-Garcia, Nicolas Cedilnik, Shuman Jia, Hubert Cochet, et al.

[Oct. 4, 2020]. �Estimation of imaging biomarker's progression in post-infarct

patients using cross-sectional data�. In: STACOM 2020 - 11th International

Workshop on Statistical Atlases and Computational Models of the Heart. url:

https://hal.inria.fr/hal-02961506

https://hal.inria.fr/hal-01875533/document
https://doi.org/10.1007/978-3-030-21949-9_35
https://doi.org/10.1007/978-3-030-21949-9_35
https://doi.org/10.1007/978-3-030-39074-7_38
https://doi.org/10.1016/j.hrthm.2019.06.012
https://doi.org/10.1016/j.hrthm.2019.06.012
http://www.sciencedirect.com/science/article/pii/S1547527119305570
http://www.sciencedirect.com/science/article/pii/S1547527119305570
https://hal.inria.fr/hal-02106618
https://hal.inria.fr/hal-02108958
https://hal.inria.fr/hal-02961506
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� Marta Nuñez-Garcia, Nicolas Cedilnik, Shuman Jia, Maxime Sermesant, et

al. [Oct. 4, 2020]. �Automatic multiplanar CT reformatting from trans-axial

into left ventricle short-axis view�. In: STACOM 2020 - 11th International

Workshop on Statistical Atlases and Computational Models of the Heart. url:

https://hal.inria.fr/hal-02961500

� Julie Magat et al. [2020]. �3D MRI of Explanted Sheep Hearts with Submil-

limeter Isotropic Spatial Resolution: Comparison between Di�usion Tensor

and Structure Tensor Imaging (under review)�. In: Magnetic Resonance Ma-

terials in Physics, Biology and Medicine

5.3 Conclusion

We have shown throughout this manuscript that computed tomography measured

left ventricular wall thickness is a valid support for patient-speci�c cardiac electro-

physiological model personalisation in chronic myocardial infarction patients. Most

of the the similar studies rely on late gadolinium enhancement magnetic resonance

imaging, which main advantage is a contrast between healthy and �brotic my-

ocardium. We believe that with its better reproducibility and higher resolution,

allowing to overcome the classical grey zone/dense scar dichotomy and map infarct

scar with a �ner level of details, CT imaging is an interesting modality in such

context.

In chapter 2, we showed that slower wave front propagation in thinner areas

was su�cient in many cases to reproduce ventricular tachycardia activation pat-

terns recorded during catheter interventions. Surmounting the limitations of Eikonal

models by using more sophisticated models in chapter 4, we showed that electrical

restitution properties could also be parameterised according to wall thickness, moti-

vated by experimental data in chapter 3 and validated by the simulation experiments

of section 4.3.

5.4 Discussion

To our knowledge, it is the �rst time that the lattice Boltzmann method for cardiac

electrophysiology has been used in the context of model personalisation for ischaemic

VT based on medical imaging. This is surprising, knowing the convenient transition

from medical imaging features to parameters for this method because both are

represented in a regular grid, a 3D image, in silico. This characteristic of the lattice

Boltzmann method also makes it particularly adapted to ongoing work combining

physical models and neural networks. In fact, the implementation we developed

during this PhD has already been used for a preliminary study [Ayed et al. 2019] on

this topic.

Our goal was to build a model personalisation framework using non invasive

data, yet in section 4.1.2, we indirectly used results obtained using invasive data in

chapter 3. Nevertheless, unlike the inspirational work for this thesis [Relan 2013],

https://hal.inria.fr/hal-02961500
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the EP data was never used to tailor parameters for a speci�c patient directly, but

rather as a gateway from imaging features to CT images.

5.5 Perspectives

Our future work will focus on re�ning the reaction di�usion model parameterisation.

Besides the precious information provided by wall thickness, it is probably valu-

able to incorporate fat in�ltration information [De Coster et al. 2018], which can

be easily extracted from CT images. We also believe that other sources of non in-

vasive data will prove useful for the personalisation process. At the very least, we

will investigate whether 12-lead electrocardiograms could be useful to tailor prop-

agation speeds and/or repolarisation characteristics to a patient physiology. Since

most target patients are already wearing an implantable-cardioverter de�brillator

that record their cardiac activity, it would be a pity not to investigate how these

recordings may be used. Connected devices such as smart watches are also an option

here, although their reliability is still debated [Koshy et al. 2018].

Improving information extracted from the electro-anatomical maps should also

prove very useful to improve our personalised simulation framework. As can be seen

in the VT recordings shown in this manuscript, many aberrant data points remain

present in the electro-anatomical maps, even when considering the supposedly easy

task of detecting the depolarisation time. This is in part explainable because these

maps are created in real time in the cardiac intervention room. Using more com-

putationally intensive algorithms to rebuild activation maps should give us better

�ideal� goals for the output of our simulations.

We limited our experiments to patients who were referred to the rhythmologists

for VT episodes. Thus we cannot evaluate whether our personalised simulations are

able to stratify the arrhythmia risk in the general infarcted populations. This is

another axis we wish to lead our future investigations to.

Image integration in catheter ablation procedures have already improved the in-

tervention process. We advocate that personalised simulations before entering the

catheter lab represent the next step of precision medicine in rhythmology. Future

ablations using non-invasive radiotherapy approaches have already shown encourag-

ing results [Cuculich et al. 2017]. Since no intracardiac exploration phase is possible

with these methods, personalised simulations could be helpful to bridge the gap

between catheter and radiation ablation of arrhythmias.
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